КОНКУРСНОЕ ПРОГРАММИРОВАНИЕ В СРЕДЕ SCRATCH ДЛЯ МЛАДШИХ ШКОЛЬНИКОВ: ВОЗМОЖНОСТИ И РЕЗУЛЬТАТЫ

Н.Д. Шумилина

ФГБОУ ВПО «Тверской государственный университет», Тверь

Рассматривается тур программирования для младших школьников в среде Scratch при проведении VI тверского турнира по информатике для школьников 2—7 классов (2014 г.). Анализируются авторские задания и результаты выполнения. Формулируются рекомендации для составления заданий, организации и проведения подобного конкурса.

Ключевые слова: программирование, Scratch, младшие школьники, конкурс, турнир по информатике.

В 1980 г. С. Пейперт опубликовал работу «Переворот в сознании: дети, компьютеры и плодотворные идеи», в которой впервые была проанализирована роль компьютера и языка программирования (ЛОГО) мышления ребёнка. В процессе формирования 2007 г. была Scratch, представлена визуальная среда программирования продолжающая идеи языка ЛОГО, предназначенная для обучения школьников младших и средних классов (автор М. Резник, ученик С. Пейперта). В 2013 г. в США публикуют законопроект, в котором предлагают программирования приравнять языки ≪важным иностранным языкам» и поощрять школы, включающие обучение информатике с самых младших классов. К сожалению, в России вопросы обучения младших школьников основам программирования до сих пор остаются открытыми, хотя академик А. П. Ершов ещё в 1981 г. провозгласил: «Программирование – вторая грамотность» и пояснил ΦΓΟС И ФБУП суть ЭТОГО лозунга. не предусматривают непрерывного систематичного, курса обучения информатике, стартующего в начальной школе. Специальное обучение информатике и программированию в младших и средних классах, если оно проводится, обычно осуществляется в рамках внеурочной деятельности.

Ежегодный тверской турнир по информатике для школьников 2—7-х классов организован кафедрой МсМНО ТвГУ и проводится с 2009 г. Он помогает школьникам младших и средних классов осваивать азы информатики и, в том числе, программирования. Студенты факультета получают возможность принять участие в организации и проведении конкурса, т.е. получить профессиональную практику в части освоения школьниками основ информатики и программирования.

Турнир, в зависимости от года проведения, включал 2—3 тура, из которых традиционным являлся тур защиты проектов, создаваемых в среде Scratch. Туры программирования проводились в 2010, 2011, 2013,

2014 гг. Одной из проблем их проведения являлся выбор языка программирования и подготовка оригинальных конкурсных заданий.

В 2010 — 2011 гг. работа строилась на основе языков исполнителей Кукарача (автор А.А. Дуванов) и Черепашка (автор К.К. Поляков). Конкурсные задания готовились непосредственно авторами. С 2013 г. решено было использовать язык и среду программирования Scratch. В этом же году был проведен тур сочинения Scratch-задач (заочно), а в 2014 г. организован очный тур решения Scratch-задач, к которому были подготовлены специальные конкурсные задания.

Тур проводился для двух групп: школьников 2—5-х классов, осваивающих среду программирования Scratch, и школьников 5—7-х классов, владеющими основами разработки Scratch-проектов.

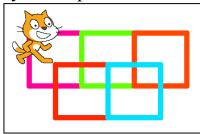
Рассмотрим особенности тура программирования, проведенного в 2014 г. для группы младших школьников.

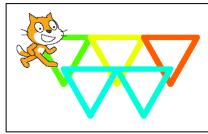
Были сформулированы направления предварительной подготовки: освоение команд (блоков) Scratch для решения несложных задач, требующих создания линейных программ или программ с несложными вариантами циклов и ветвлений; освоение механизма передачи сообщений, знакомство с переменными величинами.

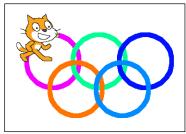
Для подготовки рекомендовалось учебно-методическое пособие для начального обучения [1], помогающее и в организации проектной деятельности младших школьников. Участникам были предоставлены задачи турнира 2013 г. («Строительство дома», «Новый год», «Пешеходный переход»), а также тренировочные задания, рекомендованные для подготовки к конкурсам Scratch Day [2]. Допускалось использование Scratch версий как 1.4, так и 2.0.

Рассмотрим конкурсные задания 2014 г. (разработчик Н.Д. Шумилина). Задачи тура нацелены на использование команд всех блоков, кроме блока «Звук».

Осьминожка (2 балла)

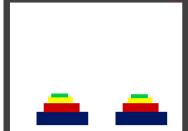

Осьминожка «плавает» по сцене слева направо: по клавише ← она смещается влево на 20 шагов, по клавише → – вправо на 20 шагов. При касании правого или левого края сцены она разворачивается. При однократном нажатии на клавишу ↑ осьминожка уплывает вверх и исчезает.


- 1. Загрузите из библиотеки изображение осьминожки (2 костюма).
- 2. Создайте скрипты, в соответствии с которыми:
 - по зеленому флажку осьминожка появляется около нижней границы сцены, точно посередине;
 - размер её равен половине библиотечного размера;


• осьминожка двигается так, как описано выше; для изображения движения вверх используйте 2 костюма.

Олимпийские кольца (0,5 – 3 балла)

Кот решил нарисовать олимпийские кольца. Сначала они у него получились «квадратными», потом «треугольными», и только потом он сумел нарисовать именно кольца.



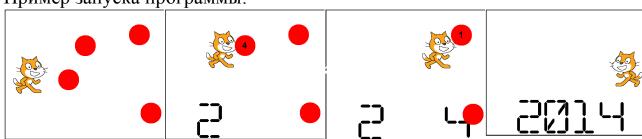
Повторите действия кота. Для этого:

- 1. Загрузите проект «Олимпийские кольца».
- 2. Допишите скрипты «Квадрат», «Треугольник», «Кольцо».
- 3. Скрипт под «Зелёным флажком» не изменяйте! Элементы выпадающих списков следует менять в соответствии с задаваемой фигурой.

Пирамидки (1 – 3 балла)

По нажатию на клавишу «пробел» строятся две одинаковые пирамидки: по очереди снизу вверх, одновременно появляются одинаковые кольца двух пирамидок.

Решения оцениваются по-разному:


- 1 балл, если кольца появляются через заданные промежутки времени;
- 2 балла, если используется передача сообщений;
- 3 балла, если используется переменная величина.

2014 (4 балла)

Кот хочет составить год проведения VI турнира: 2014. Для этого он должен «лопнуть» 4 шарика. Помогите коту!

Шарики располагаются на сцене случайным образом, но правее кота. Когда кот касается шарика, на нем появляется одна из цифр года, после чего эта цифра появляется внизу сцены, а шарик пропадает («лопается»). Когда кот «лопнет» все шарики, мы увидим год: 2014.

Пример запуска программы:

Примерное Первый шарик На третьем Итоговая начальное лопнул. На шарике цифра 1. картинка. положение. втором цифра 4.

Кто старше? (5 баллов)

Три малыша Вася, Петя и Федя спорят: кто старше? Оказалось, что родились они в одном году, в одном месяце, но дни рождения у них разные.

Кот готов помочь малышам. Он просит назвать дни рождения: сначала Васи, потом Пети, а затем Феди. Необходимо ввести с клавиатуры дни рождения каждого, а кот назовет самого старшего.

Рассмотрим основные проблемные моменты каждой задачи.

Осьминожка. Задача на внимательное чтение условия и выполнение всех его пунктов средствами Scratch: умение задавать начальное положение объекта, движение в заданном направлении по клавише, движение с заданным шагом, движение с использованием смены костюма.

Олимпийские кольца. Задача c ГОТОВЫМ скриптом ДЛЯ рисования пяти одинаковых геометрических фигур с использованием сообщений. Проблема состоит в написании рисования отдельных фигур: прямоугольника, треугольника, окружности (требуется расчет угла поворота, оценка длины стороны фигуры). Необходимый для решения материал разобран характера будут планировалось, что сложности геометрического отработаны участниками в процессе подготовки.

Пирамидки. Задача может быть решена тремя способами, указанными в условии, которые оцениваются по-разному. Также участник должен показать умение работать во встроенном графическом редакторе Scratch.

2014. Задача проверяет усвоение технологии передачи сообщений, умение задавать случайное число (координату). Рисунки шариков и цифр даются готовыми в исходном файле.

Кто старше? По сути это классическая задача определения меньшего из трех различных чисел. Проверяется умение вводить информацию с клавиатуры и выводить на экран, работать с переменными величинами (присваивать переменной величине значение и сравнивать величины).

Проанализируем состав участников, результаты выполнения заданий.

В конкурсе приняли участие 21 человек из 2–5-х классов:

Класс	2	3	4	5
Количество	1	10	6	4
участников				

Участие второклассников в конкурсе, как видим, реально, но в будущем вряд ли будет многочисленным. Проблемы: неуверенное чтение (проблема восприятия условия задачи), недостаточное время на подготовку к конкурсу. 3—4 класс — наибольшая группа участников. Общеобразовательная подготовка учащихся выше, некоторые из них уже участвовали в турнире 2013 г. В младшей группе присутствуют учащиеся 5-х классов: они осваивали Scratch первый год. Это пограничная группа, которой в будущем может не быть.

Наиболее трудными оказались (не представлено ни одного полного решения) задачи «Олимпийские кольца», «Кто старше?» (рис. 1). Для первой задачи это связано с недостаточной проработкой геометрического материала в процессе подготовки, для второй — со сложностью понятия переменной величины для младших школьников.

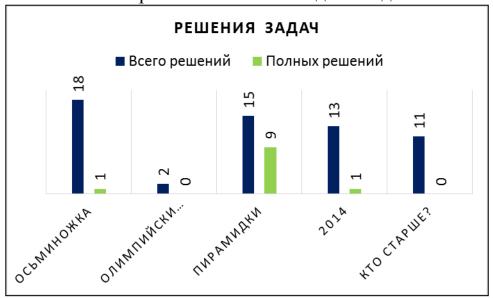


Рис. 1. Соотношение количества представленных решений и полных решений для каждой задачи тура

Для задачи «Пирамидки» получено наибольшее количество полных решений (9), что закономерно: задача похожа на тренировочную задачу «Строительство дома». Задача была решена тремя способами, каждым способом её решили по 3 участника. В этой задаче ребятам удалось использовать для решения переменную величину, но сделано это было, видимо, благодаря аналогии с тренировочной задачей.

«Осьминожка», планируемая как одна из наиболее простых задач, решалась наибольшим количеством участников (18), но в полном объеме решена только одним учеником. Это связано с большим количеством задаваемых условием параметров, часть из которых упускалась участниками из виду.

Решения задач «2014» и «Кто старше?» продемонстрировали, что дети склонны к конкретным, частным решениям. Выработка

обобщенного, абстрактного решения задач пока по плечу немногим («2014») или оказалась вовсе непосильной («Кто старше?»). Это демонстрирует примерную верхнюю границу сложности конкурсных задач: работа с переменными величинами.

Итоговая сумма баллов (рис. 2) показывает, что наиболее успешно выступили четвероклассники. Второклассники показали хороший результат (средний среди всех участников), а результаты пятиклассников оказались на уровне трехклассников. Вероятно, это проявление разницы в сроках и возможностях подготовки.

Рис. 2. Результаты тура программирования в зависимости от класса участника

Подведём главные результаты тура 2014 г. Опыт показал, что младшие школьники с интересом и желанием программируют в среде Scratch, но эта деятельность требует специальной подготовки и использования заданий, соответствующих возрастным особенностям участников.

Содержание заданий. Пакет заданий 2014 г. в целом удачен: задачи разнообразны и имеют разную степень сложности. Оценка верхней границы сложности заданий оказалась верной.

К заданиям низкого уровня сложности можно отнести задания на использование команд движения, блока внешности и контроля, реализуемые в виде линейной или простой циклической последовательности команд.

Задания на использование передачи сообщений можно отнести к заданиям среднего уровня сложности.

Задания, требующие использования переменных величин и некоторые действия с ними, следует отнести к заданиям высокого уровня сложности. Использование списков для заданий младшей группы пока не представляется целесообразным.

Подготовка участников. Следует целенаправленно учить младших школьников анализировать условие задачи: внимательно его читать, выявлять то, что дано и что требуется получить.

Необходимо с опережением (по сравнению со школьной программой) отрабатывать математические понятия: случайное число, десятичные дроби, отрицательные числа, координаты, градусную меру угла, логические связки «И», «ИЛИ», «НЕ», используемые при работе с блоками Scratch.

Необходимо уделять особое внимание работе с файлами, файловой структурой. Это умение вызвало затруднение у многих участников тура.

Подготовка заданий. Следует предлагать различные формы заданий. Это могут быть задания с готовыми графическими объектами, задания с частично готовыми скриптами, в которых необходимо дописать (или исправить) часть скриптов.

Использование скриншотов экрана (в качестве демонстрации деталей условия) оказалось удачным, его следует применять и в дальнейшем.

Оценивание решений. Следует совершенствовать систему проверки решений, отрабатывать критерии оценки.

Проведение тура. Условие задач рекомендуется объяснять всем участникам фронтально, перед началом конкурса (с последующей раздачей печатных вариантов).

Детали проведения тура программирования для младших школьников следует дорабатывать, учитывая возрастные возможности детей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рындак В. Г., Дженжер В. О., Денисова Л. В. Проектная деятельность школьника в среде программирования Scratch: учеб.-метод. пособие. Оренбург: Оренб. гос. ин-т менеджмента, 2009. 116 с.
- 2. Scratch в Оренбурге. День Scratch. Тренировка // Scratch в Оренбурге: сайт популяризации Scratch [Электронный ресурс]. URL: https://sites.google.com/site/orenscratch/den-scratch/trenirovka. Дата обращения: 7.03.2014. Загл. с экрана.

Об авторе

ШУМИЛИНА Нина Дмитриевна, кандидат педагогических наук, доцент кафедры математики с методикой начального обучения педагогического факультета ФГБОУ ВПО «Тверской государственный университет», e-mail: nshumilina@yandex.ru