УДК 546.34.882.4 535.361 ВОЗДЕЙСТВИЕ КОНЦЕНТРИРОВАННЫХ СВЕТОВЫХ ПОТОКОВ НА МЕХАНИЧЕСКИЕ СВОЙСТВА И СТРУКТУРУ КЕРАМИЧЕСКОГО ПЕНТАОКСИДА НИОБИЯ

М.Н. Палатников, О.Б. Щербина, В.В. Ефремов, Н.В. Сидоров Учреждение Российской академии наук Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН 184209, Апатиты, Академгородок, 26 a palat_mn@chemy.kolasc.net.ru

Аннотация: исследовано воздействие концентрированных световых потоков на структуру, механические свойства керамического Nb_2O_5 . Под действием высокоэнергетичного светового излучения в керамическом Nb₂O₅ образуются микро- и наноструктуры фрактального типа и возникает частично «островная» структура кристаллической решетки. Керамический подвергнутый воздействию Nb_2O_5 , высокоэнергетичного светового излучения, обладает улучшенными механическими характеристиками (микротвердостью, прочностью, трещиностойкостью, хрупкой микропрочностью).

Ключевые слова: концентрированные световые потоки, спектры комбинационного рассеяния света, микро- и наноструктуры, микротвердость, модуль Юнга, прочность, трещиностойкость, хрупкая микропрочность.

Введение

Керамика основе пентаоксида ниобия, полученная на ПО традиционной керамической обладает, технологии. как правило, крупнокристаллической характеризуется структурой низкими И пластичностью и трещинностойкостью, что значительно ограничивает ее применение. Изменение физических свойств и улучшение механических характеристик керамики может быть реализовано путем создания материала с наименьшим (микро- и нанометровым) масштабом структуры при использовании новых способов обработки материала [1].

В настоящей работе методами атомно-силовой микроскопии (ACM) и спектроскопии комбинационного рассеяния света (КРС) исследовано влияние обработки концентрированными световыми потоками (КСП) на нано-, микро- и макроструктуру, комплекс механических свойств, а также на процессы разупорядочения структурных единиц в керамическом пентаоксиде ниобия [2].

Методика эксперимента

Керамические образцы *Nb*₂O₅ получали путем светотермической обработки в фокальной зоне оптической печи [3] и по обычной керамической технологии. Для изучения микро- и наноструктуры керамик использованы анализатор изображения Thixomet®, атомно-силовой

микроскоп Nano-R² и сканирующий электронный микроскоп SEM LEO 420. Упругие и механические свойства керамик изучались контактным помощью микроскопа нанотвердомера методом с зондового -«NANOSKAN» [4]. Спектры КРС керамических образцов Nb_2O_5 регистрировались при комнатной температуре модернизированным спектрометром ДФС-24.

Результаты и обсуждения

Микроструктура образцов *Nb*₂*O*₅, полученных по обычной керамической технологии, состоит из зерен, преимущественно характерной правильной огранки (рис. 1 а).

Рис. 1 а. Структура керамических образцов *Nb*₂*O*₅, полученных по традиционной керамической технологии

Зерна между собой имеют четкие границы-грани, между которыми довольно большое количество пустот, пор. Основная доля в размерном составе образцов (рис. 16) приходится на зерна около 1-3 мкм.

В результате обработки КСП в керамическом образце Nb_2O_5 происходит образование микро- и наноструктур фрактального типа в области масштабов ~ 30 nm - 50 µm (рис. 2). Причем, данные структуры обладают основными свойствами фрактальных структур: иерархичностью и свойством самоподобия, т.е. их вид не меняется при увеличении пространственного масштаба.

Рис. 1 б. Размерный состав керамических образцов *Nb*₂*O*₅, полученных по традиционной керамической технологии

Рис. 2 а. Структуры в керамике Nb₂O₅, обработанной КСП

Тип и размерность образующихся микро- и наноструктур существеннейшим образом определяют физические характеристики керамических материалов. Так, в пентаоксиде ниобия, обработанном КСП, микро- и наноструктуры демпфируют тепловое расширение [3,4].

Значение модуля Юнга для керамики Nb_2O_5 , приготовленной по обычной керамической технологии - 134,1±0,6 ГПа. Модуль Юнга Nb_2O_5 , обработанного КСП, а также изображения характерных структур керамик Nb_2O_5 в окрестности точек измерения представлены на рис. 3.

С уменьшением интенсивности КСП вглубь, по толщине образца размер образующихся структур увеличивается в несколько раз. При этом, как видно из рис. 3, его прочность, численной характеристикой которой является модуль Юнга, понижается. В керамическом Nb_2O_5 возникает анизотропии механических свойств, обусловленная изменением микро- и макроструктуры образцов. Определение твердости и трещиностойкости

керамик осуществлялось методом сравнительной склерометрии [5,6]. При этом значения нанотвердости и микротвердости соответствуют друг другу. Для расчетов пользовались моделью для случая индентирования пирамидой Викерса [7,8,9]. Результаты определения твердости исследуемых керамик представлены в Таблице 1.

Рис. 3. Модуль Юнга и микроструктура керамических образцов *Nb*₂*O*₅ (вставки на рисунке-1,2,3,4), подвергнутых воздействию КСП различной интенсивности

Таблица 1. Микротвердость керамических пентаоксидов ниобия

Вид керамики	Nb ₂ O ₅	Nb ₂ O ₅		
	Обычная керамическая технология	Обработка КСП		
Микротвердость, Н, ГПа	9,43±1,3	11,82±1,43		

При воздействии КСП в керамиках образуются сложные микро- и наноструктуры фрактального типа [3,4]. Причем если в керамике Nb_2O_5 , полученной по обычной керамической технологии, размер присутствующих структур составляет от 500 nm до 50 µm, то обработка КСП существенно увеличивает долю наноразмерных структур. Эффект увеличения твердости (см. Таблицу 1) керамик Nb_2O_5 , полученных при воздействии КСП, в сравнении с керамиками полученными по обычной керамической технологии можно связывать с формированием в них

наноразмерных структур. Влияние размера структур керамики на ее твердость может быть объяснено в рамках известной модели Холла-Петча, правомочность которой для керамики доказана многочисленными исследованиями [10,11]. Уравнение Холла-Петча дает количественную зависимость твердости по Викерсу от среднего размера структур (зерна) \overline{d} :

$$H_{\nu} = H_0 + \frac{k_1}{\sqrt{d}},\tag{1}$$

где H_0 *и* k_1 – постоянные величины. Т.е. уменьшение размера структур материала ведет к увеличению его твердости. Полученные результаты позволили оценить критический коэффициент интенсивности напряжений первого рода K_{IC} , являющийся критерием трещиностойкости материала [8,9,12,13]. Трещиностойкость определялась по формуле:

$$K_{lc} = 0,016 \left(\frac{E}{H}\right)^{1/2} \frac{P}{c^{3/2}} , \qquad (2)$$

где *P* – прикладываемая нагрузка, *E* – модуль Юнга, *H* – микротвердость, *c* – среднее расстояние от центра отпечатка до конца трещины. Методики оценки микрохрупкости и хрупкой микропрочности основаны на количественном изучении зоны хрупкой повреждаемости в районе царапины, включающей в себя всевозможные нарушения испытуемого материала от воздействия на него сосредоточенной нагрузки (трещины, сколы) [13]. Зону повреждаемости оценивали по максимальному размеру повреждения исследуемого участка царапины, в каком бы направлении оно не проходило. Микрохрупкость определялась по формуле:

$$\gamma = \frac{L-l}{l},\tag{3}$$

где l - ширина царапины, измеренная по навалам, нм; L - средний размер зоны повреждаемости, нм. Показатель микрохрупкости γ характеризует соотношение хрупких и пластических свойств материалов: чем он выше, тем более хрупок материал. Размеры зоны повреждаемости зависят как от интенсивности внешнего воздействия на материал, так и от его прочностных свойств. Поэтому для оценки хрупкой микропрочности σ материалов при царапании использован показатель, учитывающий оба этих фактора:

$$\sigma = \frac{P}{L^2},\tag{4}$$

Хрупкая микропрочность - напряжение, необходимое для образования единицы площади хрупкого разрушения в районе воздействия индентора. Высокие механические характеристики керамик, полученных в оптической печи, по сравнению с механическими характеристиками керамик, полученных по обычной керамической технологии, см. Таблицу 2, обусловлены малыми размерами образовавшихся в них структур и большой объёмной долей, занимаемой границами между этими наноструктурами.

Параметры	<i>Nb</i> ₂ <i>O</i> ₅ традиционная керамическая технология				Nb_2O_5 обработка КСП					
Нагрузка, <i>Р</i> , МН	5	7	10	15	Среднее значение	5	7	10	15	Среднее значение
Микрохрупкость, ү	0,42	0,43	0,41	0,45	0,43	0,43	0,41	0,45	0,48	0,44
Хрупкая микропрочность,	4,90	2,80	2,50	1.90	3,02	4,45	3,15	3,02	2,97	3,40
Трещиностойкость K_{IC} , МПа·м $^{1/2}$	4,11	2,77	2,87	3,11	3,21	7,76	8,11	9,06	9,55	8,62

Таблица 2. Механические характеристики керамических пентаоксидов ниобия

Для керамического состояния ввиду сосуществования различных кристаллических форм структура *Nb*₂O₅ полностью (с определением координат атомов) не может быть описана дифракционными методами Расчеты динамики решетки для точной анализа. интерпретации колебательного спектра реальных образцов *Nb₂O₅* также практически невозможны [14-17]. О днако некоторые выводы 0 результатах воздействия КСП на Nb₂O₅ можно сделать и на основании исследований керамических образцов. На рис. 4 представлены спектры КРС образцов керамического пентаоксида ниобия, подвергшихся воздействию КСП. cm⁻¹ Линии с частотами 55 И 118 отвечают соответственно полносимметричным либрациям октаэдров и тетраэдров как целого. В области 150-400 см⁻¹ расположены линии, соответствующие колебаниям катионов, расположенных в октаэдрах и тетраэдрах [15-19]. При этом линии в области 1000 см⁻¹ соответствуют валентным колебаниям Nb-O [18-21]. С увеличением интенсивности воздействия КСП на керамический Nb₂O₅ относительная интенсивность линии с частотой CM^{-1} . 1002 соответствующей колебаниям Nb-O, возрастает. Воздействие КСП приводит к разрыву связей Nb-O-Nb в цепях тетраэдров и октаэдров и к образованию концевых связей Nb-O. Структура *Nb₂O₅* становится частично островной структурой. Доля изолированных полиэдров возрастает с возрастанием интенсивности воздействия КСП.

Рис. 4. Спектры КРС Nb₂O₅, полученного по обычной керамической технологии и подвергнутого воздействию КСП:

- 1. Относительная интенсивность КСП I_{отн.} = 1;
- 2. Относительная интенсивность КСП I_{отн.} ~ 0,5;
- 3. Относительная интенсивность КСП I_{отн.} ~ 0,25;
- 4. Относительная интенсивность КСП I_{отн.} = 0

Работа поддержана грантом НШ 6722.2010.3.

Библиографический список:

1. Андриевский, Р.А. Получение и свойства нанокристаллических и тугоплавких соединений / Р.А. Андриевский // Успехи химии. – 1994. – № 5. – С. 431-448.

2. **Жижин, Г.Н.** Оптические колебательные спектры кристаллов / Г.Н. Жижин, Б.Н. Маврин, В.Ф. Шабанов. – М.: Наука, 1984. – 232 с.

3. **Palatnikov, M.** Formation of fractal micro- and nano-structures in ceramic tantalum pentoxide under concentrated flux of light and their effect on thermal expansion / M. Palatnikov, O. Shcherbina, A. Frolov et al. // Integrated Ferroelectrics. $-2009. - V. 108. - N \ge 1. - P. 89-97.$

4. **Палатников, М.Н.** Микро- и наноструктуры, упругие свойства и термостойкость керамики с защитным покрытием из пентаоксида ниобия, обработанного концентрированным световым потоком / М.Н. Палатников, О.Б. Щербина, А.А. Фролов, Е.В. Войнич // Физика и химия стекла. – 2011. – Т. 37. – Вып. 2. – С. 79-83.

5. **Регель, В.Р**. Кинетическая природа прочности твердых тел / В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский. – М.: Наука, 1974. – 560 с.

6. **Blank, V.** Nano-sclerometry measurements of superhard materials and diamond hardness using scanning force microscope with the ultrahard fullerite C_{60} tip / V. Blank, M.

Popov, N. Lvova et al // Journal of Material Research. – 1997. – V.12. – №11. – P. 3109-3114.

7. Усеинов С.С. Измерение механических свойств материалов с нанометровым пространственным разрешением / С.С. Усеинов, В.В. Соловьев, К.В. Гоголинский и др. // Наноиндустрия. Научно-технический журнал. – 2010. – № 2 (20). – С. 30-35.

8. **Колесников, Ю.В.** Механика контактного разрушения / Ю.В. Колесников, Е.М. Морозов. – М.: Наука, 1989. – 220 с.

9. **Oliver, W.C.** An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / W.C. Oliver, G.M. Pharr // Journal of Materials Research. – 1992. – V. 7. – P. 1564-1583.

10. Андриевский, Р.А. Прочность тугоплавких соединений и материалов на их основе / Р.А Андриевский, И.И. Спивак. – Челябинск: Металлургия, 1989. – 368 с.

11. **Приходько, В.М.** Металлофизические основы разработок упрочняющих технологий / В.М. Приходько, Л.Г. Петрова, О.В. Чудина. – М: Машиностроение, 2003. – 380 с.

12. **Gong, J.** Statistical analysis of fracture toughness of soda-lime glass determined by indentation / J. Gong , Y. Chen , C. Li // Journal of Non-Crystalline Solids. – 2001. – V. 279. – P. 219-223.

13. **Вильк, Ю.Н.** Физико-механические свойства монокристаллов тугоплавких веществ в микрообъемах / Ю.Н. Вильк, В.Ф. Бердников, Ф.Ю. Соломкин // Журнал всесоюзного химического общества им. Д.И.Менделеева. – 1985. – № 6. – С. 528-535.

14. **Файрбротер, Ф.** Химия ниобия и тантала / Ф. Файрбротер. – М.: Химия, 1972. – 276 с.

15. **McConnell, A.A.** Raman spectra of niobium oxides / A.A. McConnell, J.S. Anderson, N.R. Rao // Spectrochimica Acta. $-1976. - V. 32A. - N \ge 5. - P. 1067-1076.$

16. Balachandran, U. Raman spectrum of the high temperature form of Nb₂O₅ / U. Balachandran, N.G. Eror // Journal of Materials Science Letters. – 1982. – V. 1. – P. 374-376.
17. Dobal, P.S. Micro-Raman scattering in Nb₂O₅-TiO₂ ceramics / P.S. Dobal, A. Dixit, R.S. Katiyar // Journal of Raman Spectroscopy. – 2002. – V. 33. – P. 121-124.

18. Сидоров, Н.В. Проявление фазового перехода сегнетоэлектрикантисегнетоэлектрик в Li_{0,12}Na_{0,88}Ta_{0,4}Nb_{0,6}O₃ в спектрах комбинационного рассеяния света / Н.В. Сидоров, М.Н. Палатников, Н.А. Голубятник и др. // Оптика и спектроскопия. – 2004. – Т. 97. – № 3. – С. 412-418.

19. **Сидоров, Н.В.** Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны / Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. – М: Наука, 2003. – 255 с.

20. Накамото, К. Инфракрасные спектры неорганических и координационных соединений / К. Накамото. – М.: Мир, 1966. – 411 с.

21. Сидоров, Н.В. Структурное упорядочение и комбинационное рассеяние света в сегнетоэлектрических кристаллах оксофторниобатов аммония, калия и рубидия M₅Nb₃OF₁₈ (M=NH₄, K, Rb) / H.B. Сидоров, В.Т. Калинников // Неорганические материалы. – 1999. – Т. 35. – №2. – С. 135-151.