УДК 548.528: 539.89+541.182 ОБ ИЗМЕНЕНИИ ПОВЕРХНОСТНОЙ ЭНЕРГИИ ПРИ ВСЕСТОРОННЕМ СЖАТИИ ИЛИ РАСТЯЖЕНИИ КРИСТАЛЛА

М.Н. Магомедов

УРАН Институт проблем геотермии Дагестанского научного центра РАН 367030, Махачкала, пр-т Шамиля, 39-а mahmag4@mail.ru

Аннотация: получены выражения для зависимости удельной поверхностной энергии σ и ее изохорной производной по температуре $(\partial \sigma / \partial T)_v$ от относительного объема V/V_0 кристалла простого вещества. Показано, что изотерма $\sigma(V/V_0)$ имеет максимум при $(V/V_0)_{max} < 1$, уменьшается при сжатии либо растяжении, переходя при определенных значениях $(V/V_0)_{frs} < (V/V_0)_{max} < 1$ и $(V/V_0)_{frL} > 1$ в отрицательную область: $\sigma(V/V_0)_{fr} = 0$. Это должно вызвать фрагментацию кристалла при $V/V_0 < (V/V_0)_{frs}$ или $V/V_0 > (V/V_0)_{frL}$.

Ключевые слова: поверхностная энергия, температура Дебая, параметр Грюнайзена, сжатие, растяжение, неон, железо, фрагментация, ядро Земли.

Используя для колебательного спектра кристалла модель Эйнштейна и приближение взаимодействия «только ближайших соседей», для удельной (на единицу площади) поверхностной энергии грани (100) кристалла (σ) и ее производной по температуре (*T*) было получено [1, 2]:

$$\boldsymbol{\sigma} = -\frac{k_n D R^2 L_e}{12\alpha^{2/3} r_o^2}, \left(\frac{\partial \sigma}{\partial T}\right)_{V} = -\frac{3\gamma k_b R^2}{2\alpha^{2/3} (b+2) r_o^2} F_E\left(\frac{\Theta_e}{T}\right), \tag{1}$$

где k_n – первое координационное число, $R = r_0/c$, c – расстояние между центрами ближайших атомов, $\alpha = \pi/(6 \cdot k_p)$, k_p – коэффициент упаковки структуры, k_b – постоянная Больцмана, D и r_0 – глубина и координата минимума парного потенциала межатомного взаимодействия типа Ми-Леннарда-Джонса:

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_0}{r} \right)^b - b \left(\frac{r_0}{r} \right)^a \right],$$
где $b > a$. (2)

Входящие в (1) функции L_e и $F_E(y)$ имеют вид:

$$L_{e} = U(R) + \frac{18 \gamma}{(b+2)} \frac{k_{b} \Theta_{e}}{D k_{n}} E_{w} \left(\frac{\Theta_{e}}{T}\right), \quad F_{E}(y) = \frac{y^{2} \exp(y)}{\left[\exp(y) - 1\right]^{2}},$$

$$U(R) = \frac{aR^{b} - bR^{a}}{b-a}, \quad E_{w}(y) = 0.5 + \frac{1}{\left[\exp(y) - 1\right]}, \quad y = \frac{\Theta_{e}}{T} = \frac{3\Theta}{4T},$$

$$\gamma = -\left(\frac{\partial \ln \Theta_{e}}{\partial \ln V}\right)_{T}, \quad q = \left(\frac{\partial \ln \gamma}{\partial \ln V}\right)_{T}.$$
(3)

Функции Θ_e , Θ , γ и q – это температуры Эйнштейна и Дебая ($\Theta = (4/3)\Theta_e$), первый и второй параметры Грюнайзена, которые зависят от плотности

кристалла и параметров потенциала (2). Для потенциала (2) выражение для температуры Дебая имеют вид [2, 3]:

$$\Theta(k_n,c) = A_w(k_n,c) \,\xi \left[-1 + \left(1 + \frac{8D}{k_b A_w(k_n,c) \,\xi^2} \right)^{1/2} \right] \,, \, \xi = \frac{9}{k_n^{\circ}} \,, \tag{4}$$

где функция A_w(k_n, c) возникает из-за учета энергии «нулевых колебаний»:

$$A_{w}(k_{n},c) = K_{R} \frac{5k_{n}ab(b+1)}{144(b-a)} \left(\frac{r_{o}}{c}\right)^{b+2}, \quad K_{R} = \frac{\hbar^{2}}{k_{b}r_{o}m}, \quad k_{n} = k_{n}^{0} \left(1 - \phi_{v}\right).$$
(5)

Здесь k_n^0 — число всех ячеек (как занятых, так и вакантных) ближайших к данному атому, \hbar — постоянная Планка, m — масса атома, ϕ_v вероятность обнаружить вакансию в структуре из $N + N_v$ ячеек [2, гл. 4].

Из (4) можно найти выражения для первого и второго параметров Грюнайзена:

$$\gamma = -\left[\partial \ln \Theta / \partial \ln V\right]_T = (b+2) / \left[6(1+X)\right], \tag{6}$$

$$q = \left[\partial \ln \gamma / \partial \ln V\right]_T = \gamma X \left(1 + 2X\right) / \left(1 + X\right), \, \text{где } X = A_w \xi / \Theta.$$
(7)

Выражения (4)-(6) показали хорошее согласие с экспериментальными оценками для элементарных кристаллов [2, 3]. Отметим, что здесь полагалось, что Θ , γ и q не меняются при изохорном нагреве. В противном случае выражение для Θ примет более сложный вид [2, гл. 2].

Из (3) легко видеть, что при T = 0K и при любых значениях давления имеем: $F_E(y = \infty) = 0$, что приводит к пределу:

$$\lim_{T \to 0K} \left(\frac{\partial \sigma}{\partial T} \right)_{V} = \max \left(\frac{\partial \sigma}{\partial T} \right)_{V} = -0.$$
(8)

Формулы (1) были апробированы при низком давлении ($P \cong 0$) и температурах от 0 К до плавления (T_m). Было получено хорошее согласие с экспериментальными оценками для многих элементарных кристаллов с различными структурами, характером химической связи и ролью квантовых эффектов [1, 2].

При низких давлениях и комнатных температурах, т. е. при $R = r_0/c \cong 1$ и $T \cong \Theta_e$ из (3) имеем: $U(R \cong 1) = -1$, $E_w(y \cong 1) = 1,082$, $F_E(y \cong 1) = 0,921$. Отсюда для «классического» вещества (т.е. при $k_n D/(k_b \Theta_e) \gg 1$) имеем: $L_e(R \cong 1) \cong -1$. Тогда из (1) следует, что данные функции при этих условиях должны удовлетворять неравенствам:

$$\sigma \cong \frac{k_n D}{12 \alpha^{2/3} r_o^2} > 0, \ \mathbf{H} \left(\frac{\partial \sigma}{\partial T} \right)_V \cong -\frac{3 \gamma k_b}{2 \alpha^{2/3} (b+2) r_o^2} < 0.$$
(9)

В данной работе мы изучим вопрос: как ведут себя функции поверхностной энергии и ее производной по температуре при изотермическом всестороннем сжатии или растяжении кристалла?

Как видно из (4)-(7), при предельном сжатии (т.е. $c/r_0 \to 0$, $A_w \to \infty$) выполняются предельные соотношения:

$$\lim_{V/V_{0} \to 0} \Theta = \Theta_{\max} = \frac{4 k_n D}{9 k_b}, \quad \lim_{V/V_{0} \to 0} \gamma = 0, \quad \lim_{V/V_{0} \to 0} q = q_{\max} = \frac{b+2}{3}, \quad (10)$$

где V/V_0 – отношение молярных объемов при давлении *P* и температуре *T*, и при *P* = 0 и *T* = 0*K* : $V_0 = N_A (k_p \cdot \pi/6) r_0^3$, где N_A – число Авогадро.

Из (10) следует, что при предельном сжатии ($V/V_0 = 0$) значения температуры Дебая и второго параметра Грюнайзена достигают максимумов, а функция $\gamma(V/V_0)$ при $V/V_0 \rightarrow 0$ стремится к нулю по степенной зависимости $\sim (V/V_0)^{(b+2)/3}$. Природа максимума у функции Θ_0 при $V/V_0 = 0$ обусловлена усилением роли квантовых эффектов с ростом давления. При $V/V_0 \rightarrow 0$ амплитуда «нулевых колебаний» в ячейках становится сравнимой с расстоянием между центрами ячеек. Это ведет к туннельному переносу атомов по кристаллу и к тому, что функция $\Theta_0(V/V_0)$, достигнув максимума, уже не будет зависеть от давления.

Отметим, что на возможность перехода вещества в состояние квантовой жидкости при сверхсильном сжатии в области относительно низких температур было указано в работе В.И. Марченко [4].

При предельном растяжении $(c/r_0 \to \infty, \text{ т.е. } A_w \to 0)$ выполняются предельные соотношения вида:

$$\lim_{V/V_{o}\to\infty}\Theta=0, \ \lim_{V/V_{o}\to\infty}\gamma=\gamma_{\max}=\frac{b+2}{6}, \ \lim_{V/V_{o}\to\infty}q=0.$$
(11)

Выражения (11) показывают, что при сильном уменьшении плотности кристалла функция $\Theta(V/V_0)$ асимптотически стремится к нулю по степенной зависимости ~ $(V/V_0)^{(b+2)/6}$. Т.е. при $c \gg r_0$ колебаний решетки (так же как и конденсированного состояния) уже не существует.

Из (1), (3) и (10) легко получить значения для функций σ и $(\partial \sigma / \partial T)_v$ при предельном сжатии кристалла:

$$\lim_{V/V_{o}\to 0} L_{e} = \lim_{R\to\infty} U(R) = \left(\frac{a}{b-a}\right) \lim_{R\to\infty} R^{b} = \infty,$$

$$\lim_{V/V_{o}\to 0} \sigma = -\left[\frac{k_{n} D a}{12\alpha^{2/3}r_{o}^{2}(b-a)}\right] \lim_{R\to\infty} R^{b+2} = -\infty,$$

$$\lim_{V/V_{o}\to 0} \left(\frac{\partial\sigma}{\partial T}\right)_{V} = -\left[\frac{3 k_{b} F_{E}(\Theta_{e\max}/T)}{2 \alpha^{2/3}(b+a)r_{o}^{2}}\right] \lim_{R\to\infty} \gamma R^{b} = \max\left(\frac{\partial\sigma}{\partial T}\right)_{V} = -0.$$
(12)

Для предельного всестороннего растяжения кристалла из (1), (3) и (11) можно получить следующие значения:

$$\lim_{V/V_{o}\to\infty} L_{e} = -\left(\frac{b}{b-a}\right)\lim_{R\to0} R^{a} + \frac{3k_{b}T}{D\min(k_{n})} > 0,$$

$$\lim_{V/V_{o}\to\infty} \sigma = -\left[\frac{k_{b}T}{4\alpha^{2/3}r_{o}^{2}}\right]\lim_{R\to0} R^{2} = -0,$$

$$\lim_{V/V_{o}\to\infty} \left(\frac{\partial\sigma}{\partial T}\right)_{V} = -\left[\frac{k_{b}(b+2)}{4\alpha^{2/3}(b+a)r_{o}^{2}}\right]\lim_{R\to0} R^{2} = \max\left(\frac{\partial\sigma}{\partial T}\right)_{V} = -0.$$
(13)

Здесь $\min(k_n) = k_n^0 [1 - \max \phi_v] > 1$ — минимально возможное первое координационное числа в решеточной модели при $V/V_0 = \infty$ [2, стр. 212].

Таким образом, из (12) и (13) следует, что при сверхсильных сжатиях растяжениях кристалла его поверхностная энергия становится ИЛИ отрицательной. На такое поведение функции $\sigma(P)$ при сжатии вдоль изотермы T = 0K было указано также в работах А.И. Темрокова с соавт. [5, общих принципов запрещающих 6]. Кроме того, каких-либо отрицательные значения поверхностной энергии не имеется [7]. При $\sigma < 0$ должна начаться фрагментация: кристалл должен стремиться любым путем увеличить свою удельную (на атом) поверхность: либо свободную (при растяжении), либо межкристаллитную (при сжатии).

Полагая, что структура кристалла и параметры межатомного потенциала (2) не меняются при сжатии либо растяжении, было изучено поведение функций из (1) вдоль различных изотерм при сжатиях от $V/V_0 = 1,5$ до $V/V_0 = 0,01$. Расчеты были выполнены для ГЦК-Ne и ОЦК-Fe, параметры которых представлены в Таблицах 1 и 2. При расчетах были учтены активационные процессы: образование вакансий и самодиффузия.

На рис. 1 показаны изотермические зависимости функций о и $(\partial \sigma / \partial T)_{v}$ от V/V_{0} для ГЦК-неона. Сплошная линия – изотерма $T_{m} = 83,78K$, пунктир – изотерма T = 1K, точечная линия – изотерма T = 300K. Видно, что при T = 300K условие фрагментации: $\sigma < 0$, выполняется для ГЦК-Ne при любом значении V/V_{0} .

Кристалл	т, а.е.м.	k _p	$r_0, 10^{-10}$ M	$D/k_b, K$	b	a	V _{0,} см ³ /моль
Ne	20,18	0,7405	3,1563	52,59	21,39	5,83	13,3893
α-Fe	55,847	0,6802	2,4775	12576,7	8,26	3,58	7,0494

Таблица 1. Параметры межатомного потенциала (2), определенные в [2, гл. 3]

(курсивом) экспериментальные значения для: Θ , γ и q при $T = 0K$, $P = 0$ [2, стр. 45]							
Кристалл	$k_b A_w(1)/D$	$\Theta(1), K$	$\gamma(1)$	q(1)	Θ_{\max}, K	$q_{ m max}$	
Ne	3,43×10 ⁻¹	74,6347	3,300	0,6901	280.48	7,80	
		63 ÷ 75	$2,6 \div 3,5$	0,36 ÷0,81	200,40		
or Eo	-4	478,463	1,701	0,0092	44717 2	2 1 2	
a-re	1,8×10	420 ÷478	1,4 ÷2,5	0,69 ÷ 1,7	44/1/,2	5,42	

Таблица 2. Значения функций из выражений (4) – (7) рассчитанные при $V/V_0 = 1$, и величины Θ_{max} , q_{max} . В нижних строках столбцов $\Theta(1)$, $\gamma(1)$ и q(1) представлены (курсивом) экспериментальные значения для: Θ , γ и q при T = 0K, P = 0 [2, стр. 45]

Рис. 1. Изотермические зависимости функций σ и $(\partial \sigma / \partial T)_{V}$ от V/V_0 для ГЦК-неона

Из рис. 1 видно, что изотерма $(\partial \sigma / \partial T)_v$ имеет минимум и максимум, которые лежат в области отрицательных значений, и координаты которых на оси V/V_0 с ростом температуры смещаются в сторону меньших значений V/V_0 . При уменьшении температуры изотермическая зависимость функции $(\partial \sigma / \partial T)_v$ от V/V_0 распрямляется, и при T = 1K, в соответствии с (8), почти лежит на горизонтали: $(\partial \sigma / \partial T)_v = 0$.

Функция $(\partial \sigma / \partial T)_{v}$ определяет поверхностный вклад в удельные (на атом) энтропию (*s*) и изохорную теплоемкость (*c*_v) нанокристалла [8, 9]:

$$s = s_{\rm in} - \left(\frac{\Sigma}{N}\right) \left(\frac{\partial \sigma}{\partial T}\right)_{\nu,N}, \ c_{\nu} = T \left(\frac{\partial s}{\partial T}\right)_{\nu,N} = c_{\nu \rm in} - \left(\frac{\Sigma}{N}\right) T \left(\frac{\partial^2 \sigma}{\partial T^2}\right)_{\nu,N}, \tag{14}$$

где N – число атомов, v = V/N – удельный объем, Σ – площадь поверхности, $s_{in} = -\left[\partial (F/N)_{in}/\partial T\right]_{v,N}$ и $c_{in} = T(\partial s_{in}/\partial T)_{v,N}$ – удельные энтропия и теплоемкость без учета поверхностного члена в выражении для свободной энергии (*F*). При $\Sigma/N = 0$ поверхностные члены в (14) исчезают.

При T = 0K согласно третьему началу термодинамики в «сильной» формулировке Планка должно выполняться: $\lim_{T \to 0K} s = 0$, $\lim_{T \to 0K} c_V = 0$.

Тогда, с учетом (8), из (14) можно получить соотношения, которые должны выполняться для соблюдения третьего начала термодинамики:

$$\lim_{T \to 0K} \left(\frac{\partial \sigma}{\partial T} \right)_{\nu,N} = -0, \ \lim_{T \to 0K} \left(\frac{\partial \sigma}{\partial T} \right)_{P,N} = -0, \ \lim_{T \to 0K} T \left(\frac{\partial^2 \sigma}{\partial T^2} \right)_{\nu,N} = -0.$$
(15)

Предельные значения (15) справедливы как для макрокристалла, так и при любом размере (N) и форме нанокристалла, для любой кристаллической структуры, при любом удельном объеме (v) и давлении (P) в веществе. Исходя из (14) и (15) видно, что при $\Sigma/N \neq 0$ и T > 0K поверхностный вклад в энтропию и теплоемкость положителен. Отметим, что этот вывод, как и выражения (14), справедливы, только если удельная поверхность (или если форма поверхности и кристаллическая структура) не изменяется с температурой при постоянных значениях v и N. Иначе тепловая вариация формы поверхности нанокристалла может вносить существенный вклад, как в энтропию, так и в теплоемкость нанокристалла, и в выражениях (14) появятся поправочные члены [9].

На рис. 2 показаны изотермические зависимости функций σ и $(\partial \sigma / \partial T)_{v}$ от V/V_{0} для ОЦК-железа. Сплошная линия – изотерма T = 300K, пунктир – изотерма T = 3000K. Координаты точек максимума $(V/V_{0})_{max}$ и точек фрагментации $(V/V_{0})_{fr}$ на изотермах $\sigma(V/V_{0})$ представлены в Таблице 3. Видно, что при T = 3000K зависимость $\sigma(V/V_{0})$ опускается, а максимум и условие фрагментации достигаются при меньших сжатиях.

Рис. 2. Изотермические зависимости функций σ и $(\partial \sigma / \partial T)_V$ от V/V_0 для ОЦК-железа

В Таблице 3 указаны и соответствующие данным точкам давления. Ввиду отсутствия данных для высокобарической фазы ОЦК-β-Fe, мы использовали экспериментальные зависимости $P(V/V_0)$ для ГПУ- ϵ -Fe и ГЦК- γ -Fe, которые приведены в обзоре А.И. Фунтикова [10]:

$$P(V/V_0) = \rho_0 C_0^2 \left[(V/V_0)^{-n} - 1 \right] / n, \qquad (16)$$

где для є и у фаз железа получено:

- для ГПУ-є-Fe (до ~ 2,5 Мбар): $\rho_0 = 8,3$ г/см³, $C_0 = 4,444$ км/с, n = 4,88,

- для ГЦК-ү-Fe (до ~ 0,4 Мбар): $\rho_0 = 7,98$ г/см³, $C_0 = 4,57$ км/с, n = 4,0.

Таблица 3. Рассчитанные значения точек максимума и точек фрагментации на изотермах T = 300 и 3000 К функции $\sigma(V/V_0)$ для ОЦК-железа

Т. К	(V/V_{o})	σ_{max}	$P_{\varepsilon}(\sigma_{\max})$	$P_{\gamma}(\sigma_{\max})$	$(V/V_0)_c$	$P_{\varepsilon}\left(V/V_0 ight)_{fr}$	$P_{y}\left(V/V_{0}\right)_{fr}$
-,	(/ 0) _{max}	мДж/м²	кбар	кбар	(/ 0) _{fr}	Мбар	Мбар
300	0,866	2343,54	341,9	324,1	0,587	4,18	3,09
3000	0,874	2150,11	312,2	297,4	0,595	3,89	2,91

Известно, что во внешнем ядре Земли (глубина от 2900 до 5000 км) температура составляет 4000 ÷ 5000 К, а давление изменяется от 1,4 до 3,2 Мбар = 140 ÷ 320 ГПа. Поэтому, исходя из полученных результатов, можно утверждать, что природа «жидкоподобного» поведения внешнего ядра Земли обусловлена барической фрагментацией железа.

Также нами было изучено изменение функций σ и $(\partial \sigma / \partial T)_v$ при уменьшении размера кристалла. Так как в формализме модели использовано приближение взаимодействия «только ближайших соседей», то ограничение системы поверхностью приведет к тому, что вместо k_n необходимо брать $\langle k_n \rangle$ – среднее (по всему нанокристаллу) значение первого координационного числа, которое будет зависеть как от размера (числа атомов), так и от формы нанокристалла. При этом структура решетки полагалась неизменной: $k_p = const$. Нормированное среднее значение первого координационного числа $k_n^* = \langle k_n \rangle / k_n$ ($N = \infty$) бралось равным: $k_n^* = 0.9$, т.е. для ГЦК структуры $\langle k_n \rangle = 10.8$, или: $N \cong 500$.

На рис. З показаны изотермы зависимости функций σ и $(\partial \sigma / \partial T)_v$ от V/V_0 для ГЦК-неона. Сплошная и точечная линии – это изотермы $T_m = 24,57K$ для макрокристалла и для нанокристалла. Видно, что для нанокристалла область, где $\sigma \ge 0$, сужается, а область минимума у функции $(\partial \sigma / \partial T)_v$ сдвигается влево.

126

Таким образом, при сверхсильных сжатиях или растяжениях кристалла его поверхностная энергия становится отрицательной. При $\sigma < 0$ должна начаться фрагментация, т. е. кристалл должен стремиться любым путем увеличить свою удельную (на атом) поверхность: либо свободную (при растяжении), либо межкристаллитную (при сжатии). Природу «жидкоподобного» поведения внешнего ядра Земли (резкое падение скорости сейсмических волн и вязкости) можно объяснить барической фрагментацией, т. е. переходом железа в «нанодисперсное» текучее состояние при высоких *P-T*-условиях, присущих внешнему ядру Земли.

Работа выполнена при поддержке Программы Президиума РАН (проект № 2.1.19) и РФФИ (гранты № 09–08–96508-р-юг-а и № 10–02–00085-а).

Библиографический список:

2. **Магомедов, М.Н.** Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах / М.Н. Магомедов. – М.: Физматлит, 2010. – 544 с.

3. **Магомедов, М.Н.** Об определении температуры Дебая из экспериментальных данных / М.Н. Магомедов // Физика Твердого Тела. – 2003. – Т. 45. – № 1. – С. 33-36.

4. **Марченко, В.И.** О фазах сжатого вещества / В.И. Марченко // Письма в журнал экспериментальной и теоретической физики. – 2008. – Т. 87. – № 4. – С. 245-246.

5. **Темроков, А.И.** Поверхностные явления в экстремальных условиях / А.И. Темроков // в сб.: «Экстремальные состояния вещества» / под ред. В.Е. Фортова и Е.А. Кузьменкова. – М.: ИВТАН, 1991. – 367 с.

6. **Кяров, А.Х.** Теплофизические характеристики кристаллов инертных газов / А.Х. Кяров, А.И. Темроков, Б.В. Хаев // Теплофизика Высоких Температур. – 1997. – Т. 35. – № 3. – С. 386-390.

7. Самсонов, В.М. Может ли поверхностное натяжение быть отрицательным? / В.М.

^{1.} **Магомедов, М.Н.** О зависимости поверхностной энергии от размера и формы нанокристалла / М.Н. Магомедов // Физика Твердого Тела. – 2004. – Т. 46. – № 5. – С. 924-937.

Самсонов // Первый Междисциплинарный, международный симпозиум «Физика межфазных границ и фазовые переходы (МГФП-1)-(IPBPT-1)». Труды симпозиума, Нальчик – п. Лоо (19 – 23 сентября 2011). – Ростов-н/Д: Изд-во СКНЦ ВШ ЮФУ АПСН, 2011. – С. 125-128.

8. Магомедов, М.Н. О зависимости поверхностной энергии и теплоемкости нанокристалла от температуры / М.Н. Магомедов // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов: межвуз. сб. науч. тр. / под общей редакцией В.М. Самсонова, Н.Ю. Сдобнякова. – Вып. 1. – Тверь: Тверской государственный университет, 2010. – С. 80-86.

9. **Магомедов, М.Н.** О температурной зависимости теплоемкости нанокристалла / М.Н. Магомедов // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2012. – № 1. – С. 28-32.

10. **Фунтиков, А.И.** Фазовая диаграмма и кривая плавления железа, полученные по данным статических и ударно-волновых измерений / А.И. Фунтиков // Теплофизика Высоких Температур. – 2003. – Т. 41. – № 6. – С. 954-969.