УДК 54.544

АНАЛИЗ ИЗМЕНЕНИЯ ЭНЕРГИИ ГИББСА ПРИ РАВНОВЕСНОЙ КРИСТАЛЛИЗАЦИИ СПЛАВОВ ЭВТЕКТИЧЕСКОГО ТИПА МЕТОДАМИ ГЕОМЕТРИЧЕСКОЙ ТЕРМОДИНАМИКИ

В.Д. Александров, Н.В. Щебетовская, О.В. Александрова, Е.А. Покинтелица Донбасская национальная академия строительства и архитектуры 86123, Украина, Донецкая обл., Макеевка, Державина, 2 schebetovskaja.n@mail.ru

Аннотация: Методами геометрической термодинамики показаны возможные варианты зависимости энергии Гиббса от температуры и концентрации компонентов в двухфазной зоне при равновесной кристаллизации сплавов эвтектического типа. Ключевые слова: равновесная кристаллизация, двухкомпонентные сплавы, геометрическая термодинамика, энергия Гиббса.

В основе термодинамических представлений 0 фазовых превращениях первого рода лежит анализ зависимости свободной энергии Гиббса G от температуры, давления, концентрации и др. [1-3]. Феноменологический подход к анализу функции G = f(T) при постоянном давлении для индивидуального однофазного вещества сводится к анализу энергий G = H - ST, где $S = \int C_p dT -$ энтропия, H - энтальпия, C_p теплоемкость. На рис. 1 показана подобная зависимость для жидкой $G_{I}(T)$ и для твердой G_s(T) фаз. В силу того, что полный дифференциал dG = -SdT + VdP (где V – объем, P – давление) и $(\partial G/\partial T)_{r} < 0$, с ростом температуры кривые G(T) будут опускаться и будут обращены выпуклостью вверх, т.к. $(\partial^2 G / \partial T^2) < 0$.

В точке *b* пересекаются кривые $G_L(T)$ и $G_S(T)$. Эта точка соответствует температуре плавления T_L . При этой температуре соблюдается равновесие, т.к. $G_L = G_S$. Путь истинной зависимости G(T) при охлаждении расплава с учетом фазового превращения проходит через точки *a*, *b*, *e*. Видно, что выше температуры T_L устойчива жидкая фаза, а ниже этих температур твердая фаза, т.к. в любой точке энергия Гиббса одной из фаз меньше энергии Гиббса другой фазы в этой же точке.

Вместе с тем, в литературе отсутствует подобное представление изменения энергий Гиббса G_s и G_L от температуры для сплавов. Выберем в качестве объекта для анализа энергий Гиббса систему эвтектического типа без взаимной растворимости компонентов (рис. 2). В правой части этого рисунка показаны некоторые схематические термограммы охлаждения, характеризующие равновесную кристаллизацию для чистых компонентов A, B и эвтектической смеси E, а также термограммы охлаждения одного

доэвтектического и заэвтектического состава. Точки $a_1 - a_5$ относятся к началу охлаждения расплавов, точки $b_1 - b_5 - \kappa$ началу плавления на линии ликвидуса, точки $e_2 - e_4$ – на линии солидуса, точки $f_1 - f_5$ – к завершению процесса охлаждения.

Рис. 1. Зависимость энергии Гиббса G от температуры T для твердой G_s и жидкой G_L фаз

Рис. 2. Диаграмма состояния эвтектического типа с путями охлаждения (слева) и термограммы охлаждения компонентов A(1), B(5), сплава эвтектического состава E(3) и одного доэвтектического (2) и одного заэвтектического (4) сплавов

Равновесная диаграмма состояния обычно строится при плавлении сплавов. При охлаждении сплавов также строится подобная диаграмма, но точки ликвидуса и солидуса фиксируются при охлаждении слабо прогретых расплавов при медленном охлаждении. Пунктирными линиями выше линии ликвидуса отмечены «предельные» температуры прогрева расплавов, после охлаждения которых, еще имеет место квазиравновесная кристаллизация с практическим отсутствием переохлаждений [4].

При кристаллизации сплавов следует иметь ввиду, что состояние системы проходит через три зоны – жидкую, жидко-твердую и твердую. Учитывая отсутствие в литературе надежных данных по зависимости G = f(T) для сплавов, можно лишь провести качественную оценку методами геометрической термодинамики значения $G_L^{AB}(T)$ для жидкого раствора, $G_{LS}^{AB}(T)$ для смеси компонентов в области жидко-твердого состояния, $G_S^{AB}(T)$ для твердой эвтектической смеси.

Рассмотрим бинарную систему A + B эвтектического типа без взаимной растворимости компонентов в твердой фазе. Здесь возможны два варианта анализа энергии Гиббса. Первый – это анализ температурной зависимости $G_L^{AB}(T)$, $G_{LS}^{AB}(T)$, $G_S^{AB}(T)$ для сплава A + B фиксированного состава с учетом фазовых превращений. Второй – анализ $G_L(T)$ для жидкого раствора фиксированного состава, $G_S^A(T)$ и $G_S^B(T)$ для кристаллов A и B, т.к. имеем в конечном итоге механическую смесь кристаллов индивидуальных веществ A и B с учетом изменения концентрационной зависимости $G_L = f(T, x)$ в области жидко-твердого состояния.

На рис. 3 на диаграмме состояния, обозначенной пунктирными линиями, показан первый из предполагаемых вариантов как ДЛЯ доэвтектических (I) так и для заэвтектических (II) сплавов. Для доэвтектического сплава 2 фиксированного состава ниже температуры Т₁₂ на линии b_2e_2 должны сходиться три кривые: $G_{L_1}^{AB}(T)$, $G_{L_{S_1}}^{AB}(T)$ и $G_{S_1}^{AB}(T)$. Выбор этих энергий связан с тем, что выше T_{L2} устойчив жидкий раствор. Ниже температуры ликвидуса выделяются кристаллы А, а при температуре солидуса T_{s2} затвердевает эвтектическая смесь кристаллов A-B. При этом общее содержание компонентов A и B сохраняется неизменным как выше T_{L2} , так и ниже T_{L2} и T_{S2} . Выше T_{L2} $G_{L2}^{AB} < G_{LS2}^{AB} < G_{S2}^{AB}$. Между $T_{_{L2}}$ и $T_{_{S2}}$ до точки O_2 $G_{_{LS2}}^{_{AB}} < G_{_{L2}}^{_{AB}} < G_{_{S2}}^{_{AB}}$, а после O_2 $G_{_{LS2}}^{_{AB}} < G_{_{S2}}^{_{AB}} < G_{_{L2}}^{_{AB}}$ $T_{E}, \quad G_{S2}^{AB} < G_{LS2}^{AB} < G_{L2}^{AB}.$ эвтектической Ниже температуры Для заэвтектической зоны II сходятся кривые $G_{L4}^{AB}(T)$, $G_{L54}^{AB}(T)$, $G_{S4}^{AB}(T)$, а их поведение аналогично подобным зависимостям для доэвтектической области I, за исключением того, что между температурами T_{L4} и T_{54} выделяются кристаллы В.

На рис. 3 жирными линиями выделены изменения энергии Гиббса для остывающей жидкой фазы, равновесной кристаллизации между температурами ликвидуса и солидуса и дальнейшего охлаждения твердой фазы. Эти линии соответствуют кривым охлаждения сплавов для до- и заэвтектического составов, показанных на рис. 2.

Рис. 3. Зависимость энергии Гиббса от температуры для расплавов бинарной системы эвтектического типа в доэвтектической (1) и в заэвтектической (2) областях

G(T), разобранные на рис. 3, относятся к анализу Кривые зависимости энергий Гиббса в разных фазовых областях при неизменной концентрации компонентов, в том числе для жидко-твердого состояния. Но даже в этом случае общая концентрация компонентов A и B остается постоянной. выпадении, например т.к. при кристаллов A В области, расплав доэвтектической обедняется компонентом A И обогащается компонентом В. С учетом этого обстоятельства возможен вариант анализа энергий Гиббса G_s^A и G_s^B для твердых компонентов A и Bи энергий $G_{I}(T,x)$ в области жидко-твердого состояния.

Дабы избежать спекуляций о влиянии концентрации второй компоненты на G_s^A и G_s^B , рассмотрим одну лишь доэвтектическую зону (I) диаграммы состояния для механической смеси без взаимной растворимости компонентов A и B (рис. 4). На этом рисунке показан ход кривых G_s^A , G_s^B , $G_L(T)$.

Рис. 4. Пути изменения энергии Гиббса при равновесной кристаллизации для сплавов до- (2) и заэвтектического (3) составов.

В двухфазной области от точки b_2 до точки e_2 энергия Гиббса зависит от температуры T и концентрации $x-G_L(T,x)$, т.к. при кристаллизации происходит изменение фазового состава жидкости (она обогащается компонентом B). В результате кривая $G_L(T,x)$ будет смещаться к эвтектике E, точка e_2' переместиться к точке e_2 , а новая кривая $G_L(T,x)$ при некоторой фиксированной избыточной концентрации x одного из компонента (в нашем случае компонентом B) будет проходить через точки a_2, b_2, e_2, f_2 . Аналогичным образом меняются энергии $G_{L4}(T), G_{S4}^A(T) G_{S4}^B(T)$ и для заэвтектической области. Следовательно, пути изменения энергии Гиббса при охлаждении с учетом процесса кристаллизации, будут проходить по пути $a_2 \rightarrow b_2 \rightarrow e_2 \rightarrow f_2$ для доэвтектического сплава и по пути $a_4 \rightarrow b_4 \rightarrow e_4 \rightarrow f_4$ для заэвтектического сплава.

Таким образом, пользуясь термограммами охлаждения сплавов и диаграммой состояния можно спрогнозировать закономерности температурно-концентрационных зависимостей энергии Гиббса при кристаллизации.

Библиографический список:

1. **Коттрелл, А.Х**. Строение металлов и сплавов / А.Х. Коттрел. – М.: Металлургиздат, 1961. – 288 с.

2. Чалмерс, Б. Теория затвердевания / Б. Чалмерс. – М.: Металлургия, 1968. – 288 с.

3. Жуховицкий, А.А. Физическая химия / А.А. Жуховицкий. – М.: Металлургия, 1987. – 688 с.

4. Александров, В.Д. Кинетика зародышеобразования и массовой кристаллизации переохлажденных жидкостей и аморфных сред / В. Д. Александров. – Донецк: Донбасс, 2011. – 591 с.