УДК 536.77:532.11 ЗАВИСИМОСТЬ ИЗБЫТОЧНОЙ СВОБОДНОЙ ЭНЕРГИИ И РАСКЛИНИВАЮЩЕГО ДАВЛЕНИЯ ОТ ФОРМЫ МАНЖЕТЫ ЖИДКОСТИ МЕЖДУ ДВУМЯ СФЕРИЧЕСКИМИ НАНОЧАСТИЦАМИ

Н.Ю. Сдобняков, Д.Н. Соколов, А.Ю. Колосов, А.С. Антонов, А.Н. Базулев Тверской государственный университет, 170002, Тверь, Садовый переулок, 35 nsdobnyakov@mail.ru

Аннотация: На основе термодинамической теории возмущений проведены расчеты избыточной свободной энергии и расклинивающего давления манжеты жидкости между двумя сферическими наночастицами с учетом различных приближений для описания формы манжеты. Проанализирована стабильность манжеты жидкости на основе анализа изотерм расклинивающего давления.

Ключевые слова: манжета, избыточная свободная энергия, расклинивающее давление.

В природе и технике широко распространены системы, в которых дисперсные твердые частицы или газовые пузыри соединены прослойками (манжетами) жидкости. Прилипая к частицам, жидкость искривляет мениск и, в зависимости от условий смачивания, стягивает или расталкивает их. Эти капиллярные силы существенно влияют на протекание многих технологических процессов и в значительной мере готовой продукции (жидкофазное определяют качество спекание порошков в металлокерамике и силикатной технологии, сцепление частиц между собой и с поверхностью изделий при нанесении защитных покрытий) [1]. В рамках термодинамической теории возмущений на основе определения равновесной формы манжеты жидкости между двумя сферическими наночастицами твердыми исследована избыточная свободная энергия такой наносистемы с использованием следующего соотношения [2,3]:

$$\Psi = \Psi_c + U_{34}^{(ss)}(R,l) = 2U_{13}^{(ls)}(R,l,l_1) - \frac{1}{2}U_{12}^{(ll)}(r,l,l_1) - U_{13}^{(ll)}(R,l,l_1) + U_{34}^{(ss)}(R,l), \quad (1)$$

где фаза 1 – жидкая манжета, фаза 2 – внешняя по отношению к системе среда, фазы 3, 4 – твердые сферические частицы (см. рис. 1). Здесь Ψ_c - избыточная свободная энергия манжеты, $U_{34}^{(ss)}(R,l)$ - вклад в избыточную свободную энергию за счет взаимодействия твердых сферических наночастиц.

В наших расчетах потенциал взаимодействия твердой фазы (алюминий) задавался в форме потенциала Шиффа [4], в то время как взаимодействия в пленке декана задавалась потенциалом Леннард-Джонса. Методика определения параметров потенциала Леннард-Джонса подробно изложена в [5].

Рис. 1. К рассмотрению зависимости избыточной свободной энергии жидкостной манжеты, расположенной между двумя твёрдыми сферическими частицами (θ -краевой угол смачивания, σ - поверхностное натяжение на границе жидкость-газ)

из проблем рассматриваемой модели является Олной выбор манжеты между двумя частицами. В качестве таких поверхности поверхностей нами было рассмотрено два случая: 1. в качестве профиля выбирается дуга окружности AA', задаваемая уравнением $y = y_c - \sqrt{\rho^2 - x^2}$, где параметры y_c - центр окружности, ρ - радиус окружности. Модельная поверхность получается вращением дуги AA' вокруг оси Ox. 2. Профилем является дуга AA', являющейся цепной линией и задающейся уравнением $y = A \operatorname{ch}(Bx)$. В результате вращения дуги AA' вокруг оси Ox получается поверхность, называемая катеноидом. Параметры данных кривых должны определяться как функции радиуса частиц R, углов φ и θ , а также расстояние между центрами частиц *L*, которое мы определим в единицах радиуса частиц $L = \lambda R$. Из геометрических соображений, можно составить следующую систему уравнений:

$$\begin{cases} y(x_0) = R\sin(\varphi), \\ \frac{dy}{dx}(x_0) = ctg(\varphi + \theta). \end{cases}$$
(1)

Подставляя в (1) уравнение дуги окружности или дуги цепной линии можно получить выражения для параметров $y_c(R, \varphi, \theta, \lambda), \rho(R, \varphi, \theta, \lambda)$ для окружности, или $A(R, \varphi, \theta, \lambda), B(R, \varphi, \theta, \lambda)$ для цепной линии. Данные параметры будут иметь следующий вид:

$$\begin{cases} y_c(R,\varphi,\theta,\lambda) = Y(\varphi,\theta,\lambda)R, \\ \rho(R,\varphi,\theta,\lambda) = HR \sec(\varphi); \\ A(R,\varphi,\theta,\lambda) = a(\varphi,\theta,\lambda)R, \\ B(R,\varphi,\theta,\lambda) = \frac{b(R,\varphi,\theta,\lambda)}{R}. \end{cases}$$
(2)

Здесь и далее коэффициент *H* определяется из соотношения $x_0 = (\lambda/2 - \cos(\varphi))R = HR$. Видно, что коэффициенты в уравнениях (2), (3) являются функциями вида $F(R,\varphi,\theta,\lambda) = f(R)w(\varphi,\theta,\lambda)$. Выпишем явный вид функций вида $w(\varphi,\theta,\lambda)$ уравнений (2), (3) (ограничимся случаем полного смачивания $\theta = 0$):

$$Y(\varphi,\lambda) = \sin(\varphi) + H(\varphi,\lambda)tg(\varphi)$$
(4)

-1

$$a = \frac{\sin(\varphi)}{ch(H(\varphi,\lambda)b)}, \ b = \frac{ctg(\varphi)}{\sin(\varphi)} \left(1 + cth\left(\frac{ctg(\varphi)}{\sin(\varphi)}H(\varphi,\lambda)\right) \left(\frac{\frac{ctg(\varphi)}{\sin(\varphi)}H(\varphi,\lambda)}{sh^2\left(\frac{ctg(\varphi)}{\sin(\varphi)}H(\varphi,\lambda)\right)} + 1\right)^2 \right)$$
(5)

Зная параметры (2), (3) объем манжеты можно вычислить по формуле:

$$V = \pi \int_{-x_0}^{x_0} y^2(x) dx - 2\pi R^3 \left(2\sin^2\left(\frac{\varphi}{2}\right) - \frac{1}{3} \left(1 - \cos^3(\varphi)\right) \right).$$
(6)

Соответственно выражение (6) для дуги окружности и цепной линии принимают вид:

1. $V_{neck} = 2\pi R^3 W(\varphi, \lambda)$, где функция $W(\varphi, \lambda)$ имеет вид

$$W(\varphi,\lambda) = Y^2 H + H^3 \left(\sec^2(\varphi) - \frac{1}{3}\right) - YH^2 \sec^2(\varphi) \left(tg(\varphi) + \left(\frac{\pi}{2} - \varphi\right) \sec^2(\varphi)\right) - 2\sin^2\left(\frac{\varphi}{2}\right) + \frac{1}{3} \left(1 - \cos^3(\varphi)\right).$$

Следует отметить, что при $\lambda = 2$ данное выражение существенно упрощается

$$W(\varphi) = \left(\sec(\varphi) - 1\right)^2 \left(1 - \left(\frac{\pi}{2} - \varphi\right) tg(\varphi)\right).$$

2. $V_{neck} = \pi R^3 W(\varphi, \lambda)$, где функция $W(\varphi, \lambda)$ имеет вид

$$W(\varphi,\lambda) = \frac{a^2}{2} \left(H(\varphi,\lambda) + \frac{1}{b} sh(2bH(\varphi,\lambda)) \right) - 2 \left(2\sin^2\left(\frac{\varphi}{2}\right) - \frac{1}{3} \left(1 - \cos^3\left(\varphi\right)\right) \right).$$

Нами в рамках данной работы исследовались размерные эффекты, связанные изменением размера твердых сферических частиц при условии постоянства объема манжеты жидкости, наличием линейных эффектов мы пренебрегали, предполагая наличие точечного контакта между твердыми частицами и жидкостной манжетой в направлении угла φ . Анализируя рис. 2-3 приходим к выводу, что при увеличении размера твердых сферических частиц (уменьшении угла φ) избыточная свободная энергия постоянной по объему манжеты нелинейно увеличивается до некоторого предельного значения соответствующего максимальному радиусу твердых частиц (или минимальному значению угла φ).

Рис. 2. Размерная зависимость избыточной свободной энергии жидкостной манжеты декана (приближение формы - сфера), расположенной между двумя твердыми сферическими наночастицами алюминия при различных значениях $R^* = R/\alpha$ и угла φ

Рис. 3. Размерная зависимость избыточной свободной энергии жидкостной манжеты декана (приближение формы - катеноид), расположенной между двумя твердыми сферическими наночастицами алюминия при различных значениях $R^* = R/\alpha$ и угла φ

На основе зависимостей избыточной свободной энергии манжеты для исследования стабильности такой системы, вводя в рассмотрение «условное» расклинивающее давление

$$\Pi^*(\bar{h}) = -\partial(\Psi / S_c) / \partial \bar{h} , \qquad (7)$$

где $S_c = \pi D^2/4 = \pi R^2 \sin^2 \varphi$ - площадь контакта манжеты с твердыми сферическими наночастицами, \overline{h} - эффективная средняя толщина манжеты, определяемая соотношением

$$\overline{h} = \int_{-l_1}^{l_1} h(y) dy = R \cdot \left[2 - \sqrt{1 - \frac{R^2}{l_1^2}} - \frac{R^2}{l_1} \arcsin\left(\frac{l_1}{R}\right) \right],$$

здесь у - вертикальная координата.

На рис. 4-5 представлены зависимости изотерм «условного» расклинивающего давления манжеты расплава Π^* от величины приведено средней толщины манжеты $h^* = \overline{h} / a$. Используя критерий устойчивости для манжеты

$$\partial \Pi^* \left(\bar{h} \right) / \partial \bar{h} < 0 \tag{8}$$

можно установить область размеров, в которой подобная система должна быть устойчива.

Рис. 4. Зависимость «условных» изотерм расклинивающего давления манжеты декана (приближение формы - сфера), от величины эффективной средней толщины манжеты для системы соответствующей рис. 2

Рис. 5. Зависимость «условных» изотерм расклинивающего давления манжеты декана (приближение формы - катеноид), от величины эффективной средней толщины манжеты для системы соответствующей рис. 3

Работа выполнена в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы и гранта РФФИ (проект № 12-03-31593).

Библиографический список:

1. Степанов, Ю.Н. Влияние моделирования формы перешейка спекаемых сферических частиц на точность расчета роста перешейка / Ю.Н. Степанов, М.И. Алымов // Металлы. – 2005. – № 1. – С. 34-36.

2. Сдобняков, Н.Ю. Исследование проблемы термодинамической устойчивости манжеты жидкости между двумя сферическими наночастицами / Н.Ю. Сдобняков, Д.Н. Соколов, Д.А. Кульпин и др. // Конденсированные среды и межфазные границы. – 2011. – Т. 13. – № 2. – С. 196-202.

3. Сдобняков, Н.Ю. О проблеме термодинамической устойчивости манжеты жидкости между двумя сферическими наночастицами металлов / Н.Ю. Сдобняков, Д.Н. Соколов, Д.А. Кульпин и др. // Бутлеровские сообщения. – 2011. – Т. 25. – № 7. – С. 29-34.

4. Schiff, D. Computer experiments on liquid metals / D. Schiff // Physical Review. – 1969. – V. 186. – \mathbb{N}_{2} 1. – P. 151-154.

5. Сдобняков, Н.Ю. Применение термодинамической теории возмущений к расчету удельной избыточной свободной энергии и расклинивающего давления в смачивающем слое неполярной жидкости с выпуклой границей раздела / Н.Ю. Сдобняков, Д.А. Кульпин, В.М. Самсонов и др. // Известия РАН, Серия физическая. – 2009. – Т. 73. – № 8. – С. 1198-1202.