УДК 539.121.8.04 МИКРОСТРУКТУРА И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПЛЕНОК НА ОСНОВЕ Ті-АІ-N В ЗАВИСИМОСТИ ОТ СООТНОШЕНИЯ ГАЗОВ В ВАКУУМНОЙ КАМЕРЕ

Т.О. Сошина

ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет», Лысьвенский филиал, 618900, Лысьва, ул. Ленина, 2 soshtanya@rambler.ru

Аннотация: Изучено влияние содержания азота N_2 в газовой смеси на фазовый состав, морфологические особенности поверхности, структурные характеристики и физико-механические свойства пленок на основе Ti - Al - N, формируемых методом импульсного магнетронного распыления. При оптимальном содержании N_2 в газовой смеси получена поликристаллическая пленка с уникальным комплексом физико-механических свойств.

Ключевые слова: импульсное магнетронное распыление, содержание N_2 в газовой смеси, фазовый состав, микроструктура, физико-механические свойства.

1. Введение

Поликристаллические пленки на основе Ti - Al - N (пленки Ti - Al - N) благодаря высоким физико-механическим свойствам [1-3], а также окислению при высоких температурах стойкости к [4], малому коэффициенту трения [5] обладают повышенным сопротивлением абразивному износу. Высокие эксплуатационные свойства пленок *Ti* - *Al* - *N* зависят от их химического [1,2] и фазового состава; степени стехиометрии; морфологических особенностей поверхности; микроструктуры [1,3], а также различных механизмов формирования слоев и подслоев пленки *Ti-Al-N*: эффекта Холла – Петча, зернограничного и внутризеренного процессов [6]. Актуальной задачей ряда последних исследований [1-7] является обеспечение контролируемого изменения состава и структуры пленок *Ti* - *Al* - *N* для обеспечения заданного комплекса свойств путем определения оптимальных технологических параметров процесса осаждения пленки *Ti*-*Al*-*N*. Одним из перспективных ионно-плазменных методов осаждения пленок *Ti* - *Al* - *N* является импульсное магнетронное распыление (ИМР) [2,3], а наиболее важными его технологическими параметрами - парциальное давление газовой смеси, напряжение смещения на подложке, мощность магнетронной системы и процентное соотношение газов в вакуумной камере [2-4,7].

Целью настоящей работы является исследование влияния содержания азота в газовой смеси на параметры структуры, фазовый состав, морфологические особенности и физико-механические свойства пленок *Ti* - *Al* - *N*.

2. Методика эксперимента

Осаждение пленок Ti - Al - N осуществляли методом ИМР двух мишеней из титана марки BT-1-00 и алюминия марки A85. Материал тестовых образцов ($12 \times 12 \times 3$ мм) - быстрорежущая сталь P6M5 ($T_{temp} = 773...793K$). Подготовка поверхности образцов включала их ионную очистку - нагрев до температуры 773 К. Для увеличения адгезионной прочности пленки Ti - Al - N на подложку предварительно осаждали подслои из Ti, затем из TiN.

Рентгеноструктурный и рентгенофазовый анализ пленок Ti-Al-N ДРОН-4 дифрактометре в проводили на Cu K_{α} излучении. Микроструктуру сформированных пленок изучали на растровом электронном микроскопе BS 300 с приставкой для микроанализа EDAX Genesis 2000. Физико-механические свойства пленок *Ti*-*Al*-*N* определяли методом наноиндентации в соответствии с DIN EN ISO 14577-1 с использованием прибора Micro-combi tester с ПО. Адгезию пленки оценивали по величине SRC - отношение площади скола пленки вокруг отпечатка алмазного конуса Роквелла (150 кгс) к площади отпечатка в плоскости пленки (метод разработан в ХФТИ). Съемку отпечатка конуса Роквелла производили универсальном на алмазного металлографическом микроскопе Альтами МЕТ5 с ПО.

3. Результаты эксперимента и обсуждение

В пленке *Ti* - *Al* - *N* в зависимости от концентрации *N*₂ в газовой смеси изменяется соотношение трех входящих в нее фаз: кубической TiN (с решеткой типа NaCl), кубической AlN (с решеткой типа NaCl) и гексагональной $Ti_3 - Al_2 - N_2$ (с решеткой типа $P6_3mc$). При содержании N_2 в формируется двухфазная пленка смеси 7% Ti - Al - Nгазовой С максимальной объемной долей фазы (111) *TiN*, максимальной степенью Ti - Al - N. Максимальное текстурированности пленки отклонение межплоскостного расстояния от табличного значения свидетельствует о максимальной микродеформации кристаллической решетки. Объяснением полученного фазового состава пленки *Ti* - *Al* - *N* может являться увеличение подвижности и плотности ионов инертного газа. При повышении содержания N_2 до 10 % происходит смена основной фазы пленки *Ti* - *Al* - *N* с (111) *TiN* на (107) *Ti*₃ - *Al*₂ - *N*₂, сопровождающаяся изменением степени текстурированности пленки *Ti*-*Al*-*N* (см. рис. 1).

Дальнейшее увеличение содержания N₂ до 12% приводит к многократному увеличению объемной доли гексагональной фазы (107)

 $Ti_3 - Al_2 - N_2$ и уменьшением отклонения межплоскостного расстояния от табличного значения. Всем, осажденным пленкам характерны разнонаправленные отклонения положения дифракционных пиков от табличных значений, что свидетельствует о присутствии разнородных внутренних напряжений в пленках *Ti* - *Al* - *N*. Уменьшение уширения пиков позволяет предположить уровня фаз (β) снижение внутренних напряжений по мере увеличения содержания N_2 (см. Таблицу 1) [7].

Средний размер областей когерентного рассеяния рентгеновского излучения (ОКР), свидетельствует о том, что сформированные пленки Ti-Al-N имеют нанокристаллическое строение с размером ОКР 5,0...22,5 нм (см. Таблицу 1). Минимальный размер ОКР соответствует пленке Ti-Al-N с преимущественной кристаллографической ориентацией относительно плоскостей (107), сформированной при максимальном содержании азота.

Рис. 1. Сравнительный спектр дифрактограмм ($Cu K_{\alpha}$ - излучение) участков пленок *Ti* - *Al* - *N*, полученных ИМР на подложках из *P6M5* при различном содержании *N*₂

Таблица	1.	Структурные	характеристики	пленок	Ti - Al - N:	$d_{_{TiN}}$	—	межплоскостное
расстоян	ие:	$d_{TiNtab} = 0,2450$	HM ¹ , $d_{Ti_2Al_2N_2tab} =$	0,2041 н	IM ²			

N ₂ ,%	Фазовый состав, %			Размер ОКР, нм			.1	d mr	a^0 (a^0
	TiN	AlN_{cub}	$Ti_3Al_2N_2$	TiN	AlN_{cub}	$Ti_3Al_2N_2$	a_{TiN} , HM	$a_{Ti_3Al_2N_2}$, HM	$\beta_{111}^{*} / \beta_{107}^{*}$
7	56	1	43	7,5	22,5	12,0	0,2458	0,2023	0,52/1,70
10	44	5	51	6,0	17,5	6,0	0,2433	0,2025	0,54/1,14
11	27	16	57	5,5	11,5	5,5	0,2452	0,2036	0,54/0,74
12	10	4	86	5,0	11,5	5,0	0,2433	0,2035	1,17/0,69

¹ ASTM № 00-008-7629

² ASTM № 01-080-2286

(в) (г) Рис. 2. Морфология пленок Ti - Al - N, сформированных ИМР: a) $N_2 = 7\%$; б) $N_2 = 10\%$; в) $N_2 = 11\%$; г) $N_2 = 12\%$

Микроструктура поверхности пленок Ti - Al - N, сформированных при различном содержании N_2 существенно различается. В условиях осаждения с минимальным содержанием N_2 в газовой смеси формируется пленка с поверхностной глобулярной (7% N_2) (см. рис. 2a) и неравномерной крупноячеистой структурой (10% N_2 и 11% N_2) с

размерами ячеек овальной формы 500-750 нм (см. рис. 2б, 2в). При увеличении содержания происходит дальнейшем N_{2} первичное Ti - Al - N, чем свидетельствует упорядочение пленки 0 переход поверхностной ячеистой структуры в плотную равномерно зернистую структуру с минимальным размером зерен 5...45 нм (см. рис. 2г).

Рис. 3. 3*D* структурные образования на поверхности пленок Ti - Al - N, сформированных ИМР: а) 7% N_2 : 7,5 мкм; б) 10 % N_2 : 3,5 мкм; в) 12 % N_2 : 5 мкм

3D образования, формируемые на поверхности пленок Ti - Al - N в зависимости от содержания азота в газовой смеси различаются по структуре и конфигурации. На поверхности пленки Ti - Al - N с глобулярной структурой помимо беспорядочных 3D образований глобулярного строения (см. рис. 2a) образуются 3D образования с зернистой структурой с низкой когезионной прочностью (7% N_2) (см. рис. 3a). Многократное нарушение сплошности поверхности пленки Ti - Al - N наблюдается в виде глубоких локальных разрушений поверхностных слоев (см. рис. 4a). Причинами формирования глобулярной структуры пленки Ti - Al - N и нарушения ее сплошности может служить анизотропия скоростей формирования пленки, вызванная неравновесными условиями осаждения, свойственными для ионно-плазменных методов.

На поверхности пленок Ti - Al - N с ячеистой структурой (10% N_2 и 11% N_2) образуются единичные разрушенные поликристаллические образования (см. рис. 3б). Нарушения сплошности поверхности пленки наблюдается в виде глубоких локальных дефектов поверхностных слоев (см. рис. 4б, 4в). Формирование ячеистой структуры и дефектов поверхности обусловлено разнородными напряжениями в пленке Ti - Al - N, установленными в процессе рентгеноструктурного анализа.

Рис. 4. Дефекты поверхности пленки *Ti* - *Al* - *N*, сформированных ИМР: а) 7% *N*₂ : 5 мкм; б) 10 % *N*₂ : 9 мкм; в) 11 % *N*₂ : 2 мкм; г) 12 % *N*₂ : 4,5 мкм

Уменьшение количества и размеров 3D образований (см. рис. 3в) и несплошностей поверхности (см. рис. 4г) наблюдается у пленок Ti - Al - N с

зернистой структурой (12% N₂). 3D образования образованы в процессе коагуляции более мелких образований с аналогичной структурой.

Анализ результатов механических испытаний пленок Ti-Al-N (см. Таблицу 2) и сопоставление их с полученными результатами структурных и рентгенофазовых исследований (см. Таблицу 1) показал, что пленки *Ti-Al-N* с глобулярной структурой, минимальной объемной долей фазы обладают низкими физико-механическими свойствами $Ti_3 - Al_2 - N_2$ показателями адгезии к подложке. Микротвердость и адгезия пленки *Ti* - *Al* - *N* к подложке значительно улучшаются при содержании N_2 от 10% и выше вследствие увеличения в ней объемной доли фазы Ti₃ - Al₂ - N₂ пленки. Пленки с плотной мелкозернистой структурой и преобладанием в пленке фазы $Ti_3 - Al_2 - N_2$ (12% N_2) имеют лучшие физико-механические характеристики (см. Таблицу 2): высокие значения H/E и W_e (при средних для данных пленок $W_e = 70\%$ [3]), максимальную твердость и низкое Полученный модуля упругости. комплекс значение свойств свидетельствует о максимальной стойкости пленки к упругой деформации разрушения, минимальных напряжениях на границе пленка/подложка (соответствие низкого модуля упругости пленки Ti - Al - Nмодулю упругости стальной подложки ($E = 205 \Gamma \Pi a$).

Таблица 2. Физико-механические характеристики пленок Ti - Al - N. Здесь E – модуль упругости, H/E – стойкость пленки к упругой деформации, H^3/E^2 – стойкость пленки к пластической деформации, W_e - упругое восстановление, SCR – показатель адгезии пленки к подложке

N ₂ ,%	Толщина пленки, мкм	H_{μ} , ГПа	<i>Е</i> , ГПа	H/E	H^3/E^2	$W_e,\%$	SCR,%
7	2,5	16,0	252,5	0,068	0,06	30,4	19,4
10	2,5	28,6	294,0	0,102	0,45	56,4	0
11	2,5	32,0	296,7	0,115	0,79	64,1	0
12	3,5	40,2	305,9	0,14	1,27	73,0	0

Низкие механические характеристики пленки Ti - Al - N с глобулярной структурой (7% N_2), объясняются низкой объемной долей тройной фазы $Ti_3 - Al_2 - N_2$ и неравномерностью строения пленки. Многократное увеличение микротвердости может быть вызвано рядом причин: уменьшением размера зерен до 5...45 нм, плотности пленки Ti - Al - N и максимальной объемной долей гексагональной фазы $Ti_3 - Al_2 - N_2$.

4. Выводы

Установлено влияние содержания N_2 на фазовый состав, структуру и физико-механические свойства пленок Ti - Al - N. В исследуемом интервале содержания N_2 происходит изменение соотношения объемных долей фаз с переходом от основной кубической фазы (111) TiN пленки, формируемой при 7% N_2 , к основной гексагональной фазе (107) $Ti_3 - Al_2 - N_2$, образуемой в пленке в интервале 10–12% N_2 , с уменьшением размеров ОКР до 5 нм.

Микроструктура пленки Ti - Al - N, с увеличением содержания N_2 , изменяется от глобулярной структуры до плотной равномерно мелкозернистой поверхностной структуры. Качественное изменение структурного состояния пленки Ti - Al - N сопровождается уменьшением размеров и количества 3D образований и дефектов поверхности пленки.

Фазовые и структурные изменения в пленках Ti - Al - N, происходящие при увеличении содержания N_2 приводят к многократному росту микротвердости, увеличению адгезионной прочности пленки, стойкости к упругой и пластической деформации. Объяснением такого изменения свойств может служить наноэффект, присутствующий при размерах ОКР менее 10 нм.

Оптимальное значение содержания N_2 составляет 12%, при котором формируется менее напряженная пленка Ti - Al - N с наилучшим сочетанием физико-механических свойств; минимальным размером зерна 5...45 нм, плотной зернистой структурой.

Научные исследования проведены в рамках НИР 01201274914 «Разработка технологии получения высокопрочных наноструктурных конструкционных низкоуглеродистых сталей с износостойкими наноструктурированными покрытиями» при финансовой поддержке государства в лице Минобрнауки России. Соглашение № 14.В37.21.1638.

Библиографический список:

1. Astrand, M. Deposition of $Ti_{1-x}Al_xN$ using bipolar pulsed dual magnetron sputtering / M. Astrand, T.I. Selinder, M.E. Sjöstrand // Surface and Coatings Technology. – 2005. – V. 200. – No 1-4. – P. 625-629.

2. **Barshilia, H.C.** Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering / H.C. Barshilia, K. Yogesh, K.S. Rajam // Vacuum. $-2009. - V. 83. - N_{2} 2. - P. 427-434.$

3. **Benegra, M.** Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering / M. Benegra, D.G. Lamas, M.E. Fernández de Rapp, N. Mingolo, A.O. Kunrath, R.M. Souza // Thin Solid Films. -2006. - V. 494. $-N_{2} 2. - P.$ 146-150.

4. **Santana, A.E.** Thermal treatment effects on microstructure and mechanical properties of *TiAlN* thin films / A.E. Santana, A. Karimi, V.H. Derflinger, A. Schütze // Tribology Letters. $-2004. - V. 17. - N_{2} 4. - P. 689-696.$

5. **Ipaz, L.** Improvement of mechanical and tribological properties in steel surfaces by using titanium–aluminum/titanium–aluminum nitride multilayered system / L. Ipaz, J.C. Caicedo, J. Esteve, F.J. Espinoza-Beltran, G. Zambrano // Applied Surface Science. $-2012. - V. 258. - N_{\odot}. 8. - P. 3805-3814.$

6. **Кавалейро, А.** Наноструктурные покрытия / под ред. А. Кавалейро, Д. де Хоссон; пер. с англ. – М.: Техносфера, 2011. – 752 с.

7. **Каменева, А.Л.** Изучение стадий формирования поликристалличесих пленок нитрида титана методом электродугового испарения в зависимости от концентрации азота в газовой смеси / А.Л. Каменева, Т.О. Сошина, Л.Н. Гусельникова // Нанотехнологии функциональных материалов НФМ'10: сб. науч. тр. – СПб.: Изд-во Санкт-Петербургского государственного политехнического университета, 2010. – С. 411-413.