удк 537.9 АТОМНАЯ СТРУКТУРА КЛАСТЕРОВ ЦИРКОНИЯ $Zr_N(N = 4 \div 15)$: МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Н.А. Панькин

ФГБОУ ВПО «Мордовский государственный университет имени Н.П.Огарева» 430005, Россия, Саранск, ул. Большевистская, 68 panjkinna@yandex.ru

Аннотация: Исследованы различные изомеры свободных кластеров циркония Zr_N $(N = 4 \div 15)$. Результаты получены методом молекулярной динамики с использованием многочастичного потенциала взаимодействия Cleri и Rosato. Рассчитаны: средние длина и энергия связи, координационное число, а также частоты появления различных изомеров.

Ключевые слова: кластеры циркония, классическая молекулярная динамика, многочастичный потенциал, атомная структура.

1. Введение и постановки цели

Цирконий, как и титан, широко применяется при ионно-плазменной модификации поверхности твердых тел – создание на ней пленок и покрытий, очистка, её распыление и т.д. [1, 2]. В данных технологиях используются или могут образовываться кластерные образования, которые по своим свойствам отличаются как от отдельных атомов, так и массивного твердого тела. Они могут образовываться в результате распыления соответствующих материалов и агломерационных процессов, протекающих в газовой фазе [3-5]. Изучение структуры, свойств, а также процессов с участием кластеров является актуальной задачей современных физики и химии. В настоящее время нет экспериментальных методов (из-за ограничений научного оборудования исследования ПО пространственному временному разрешениям), И которые непосредственно бы измеряли характеристики кластеров – определяется лишь некоторая величина, зависящая от структуры [4-7]. В данном случае широко применяется математическое моделирование в рамках различных подходов вычислительных физики и химии. Наилучшее согласие с экспериментом получается при квантовомеханических расчетах, но они нередко дают противоречивые данные при значительных затратах ресурсов вычислительной техники [8, 9]. К меньшим аппаратным затратам приводит использование методов классической молекулярной динамики [10].

Цель настоящей работы – расчет атомной структуры и вероятности появления различных изомеров свободных кластеров циркония Zr_N с числом атомов (*N*) в них от 4 до 15. Их изучению найдено небольшое количество работ [7, 11, 12]. Они посвящены, в основном, рассмотрению

низкоэнергетических структур. Анализ литературы также не выявил публикаций, посвященных расчету вероятности (частоты) появления различных изомеров кластеров Zr_N . Подобные исследования проведены лишь для кластеров некоторых химических элементов (титана, платины, алюминия, бериллия [8, 13-15]).

2. Описание модели.

Оптимизация структур исследуемых кластеров проводилась в несколько этапов. Вначале, координаты атомов кластера задавались случайным образом, и проводилась процедура минимизации расстояний между атомами, которые ограничивались (снизу) радиусом первой координационной сферы массивного циркония. На следующем этапе атомам сообщались скорости согласно распределению Максвелла при температуре 10K. Далее проводилась релаксация (2×10^5 шага по времени) в NVT-ансамбле с термостатом Нозе-Гувера [16]. Решение уравнений движения проводили методом Верлета в «скоростной» форме [17] с шагом $1 \phi c$.

Межатомное взаимодействие описывали многочастичным потенциалом Клери и Росато [18]. Радиус обрезания потенциала соответствовал седьмой координационной сфере кристалла циркония.

Для выявления различных изомеров кластера и расчета частоты (вероятности) их появления P, рассматривалось 500 случайных исходных конфигураций атомов. При расчете средних значений координационного числа $\langle Z \rangle$ и длины связи $\langle r_b \rangle$, в качестве ближайших соседей считались атомы, расстояние между которыми не превышало 1,1 радиуса первой координационной сферы кристалла циркония. Для обозначения групп симметрии использовали символику Шенфлиса.

3. Результаты и их обсуждение.

Все исследуемые кластеры принимали трехмерные конфигурации. Значения некоторых параметров для изомеров кластеров с максимальными частотами приведены в таблице. Ниже приведено краткое описание структур циркониевых кластеров с N от 4 до 15 атомов с максимальными частотами (вероятностью) появления P.

Кластеры ИЗ четырех атомов циркония представляет собой правильную треугольную пирамиду - тетраэдр. Zr₅ образует тригональную бипирамиду. Кластер имеет структуру октаэдра. $N \ge 7$ Zr₆ При наблюдается появление нескольких изомеров. В частности, для Zr₇ обнаружено две структуры – пентагональной бипирамиды и октаэдра с правильным тетраэдром, присоединенным к одной из его граней.

Таблица 1. Изображения и параметры структуры изомеров с максимальной частотой появления. Правый столбец рядом с рисунком: 1-ая строка – энергия связи на атом (*эВ/атом*), 2-ая – средняя длина связи (в *ангстремах*), 3-я – среднее координационное число, 4-ая и 5-ая строки – частота появления и пространственная группа симметрии для рассматриваемого изомера, соответственно

N = 4	-4,693 2,483 3,00 100 T_d	N = 5	-4,998 2,535 3,60 100 D_{3h}	N = 6	-5,297 2,549 4,00 100 T_h
N = 7	-5,411 2,565 4,29 57 $C_{3\nu}$	N = 8	-5,583 2,644 5,00 79 $C_{2\nu}$	N = 9	-5,691 2,571 4,67 44 D_{3h}
N = 10	-5,788 2,623 5,40 47 $C_{3\nu}$	N = 11	-5,874 2,633 5,64 49 $C_{2\nu}$	N = 12	-5,995 2,643 6,00 87 $C_{5\nu}$
N = 13	-6,143 2,662 6,46 97 I_h	N = 14	$\begin{array}{c} -6,152 \\ 2,685 \\ 6,578 \\ 94 \\ C_{2\nu} \end{array}$	N = 15	$ \begin{array}{c} -6,221 \\ 2,682 \\ 6,67 \\ 98 \\ D_{6d} \end{array} $

Первый изомер имеет ось симметрии пятого порядка, характерной для икосаэдрической структуры. Кластер Zr₈ получается присоединением двух тетраэдров к смежным граням октаэдра симметричных относительно его экваториальной плоскости. Ему соответствуют максимальная энергия связи E_b и минимальные значения < r_b > и < Z > среди прочих изомеров данного размера. Zr₉ представляет собой тетрагональную антипризму, тетрагональной пирамидой. Максимальным значениям Р накрытую Nкластеров циркония с ОТ 10 12 соответствуют структуры ДО пентагональной бипирамиды, с присоединением к её граням (трех, четырех и пяти) тетраэдров с достраиванием второго пентагонального кольца икосаэдра. В результате, кластер Zr_{12} имеет структуру икосаэдра без атома в одной из его вершин. Zr_{13} является икосаэдром. Наиболее вероятная структура Zr_{14} представляет собой искаженный икосаэдр. Он получается добавлением атома в пентагональное кольцо икосаэдра. У кластера из 15 атомов пентагональные кольца икосаэдра заменены на соответствующие гексагональные.

Зависимость частоты P изомеров от энергии связи для некоторых кластеров размером N показана на рис. 1. Можно отметить увеличение частоты появления изомера с ростом модуля энергии связи (при фиксированном N). Аналогичное поведение частоты отмечалось также при исследовании кластеров других металлов [13-15]. При значениях $N \ge 12$ отмечается существенное преобладание P(>90%) изомера с максимальным значением энергии связи над частотами появления других изомерных структур данного размера.

Рис. 1. Гистограммы распределения частоты появления P изомеров кластеров циркония по энергии связи на атом E_b (N – число атомов).

Увеличение размера кластера (см. Таблицу 1) сопровождается ростом параметров E_b , $\langle Z \rangle$ и $\langle r_b \rangle$. При этом значения энергии связи, координационного числа и длины связи коррелируют между собой. На рис. 2 показана зависимость $E_b = f(\langle r_b \rangle)$ для изомеров кластеров Zr_N . На

ней выделяются (по крайней мере две-три) области с зависимостью E_b от $< r_b >$ близкой к линейной (линии 1, 2 и 3 на рис. 2). При этом линия 2 содержит в основном точки соответствующие структурам с максимальными значениями вероятности появления. При дальнейшем росте размера кластера возможно появление других подобных областей.

Рис. 2. Зависимости 1) $E_b = f(\langle Z \rangle)$; 2) $E_b = f(\langle r_b \rangle)$; 3) $\langle r_b \rangle = f(\langle Z \rangle)$ (• – изомер с максимальной частотой появления; \circ – прочие изомеры). $\langle r_b \rangle - \text{Å}$.

Можно также отметить, что кластерам с $N = 10 \div 15$ и наибольшей частотой P_i соответствуют максимальные значения E_b , $\langle r_b \rangle$ и $\langle Z \rangle$ среди прочих изомеров с данным числом атомов. Подобная закономерность не наблюдалась для кластеров меньшего размера.

Библиографический список:

1. Панькин, Н.А. Рентгенографическое исследование покрытий, полученных вблизи катода при ионно-плазменном осаждении нитрида титана / Н.А. Панькин, Н.А. Смоланов // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2009. – № 6. – С. 102-105.

Benia, H.M. Investigations on non-stoichiometric zirconium nitrides / H.M. Benia, M. Guemmaz, G. Schmerber // Applied Surface Science. – 2002. – V. 200. – I. 1-4. – P. 231-238.
 Матвеев, В.И. Энергетические спектры и температурные распределения кластеров при ионном распылении металла / В.И. Матвеев, С.А. Кочкин // Журнал технической физики. – 2004. – Т. 74. – № 3. – С. 65-71.

4. **Макаров, Г.Н.** Экстремальные процессы в кластерах при столкновении с твердой поверхностью / Г.Н. Макаров // Успехи физических наук. – 2006. – Т. 176. – № 2. – С. 121-174.

5. Смирнов, Б.М. Процессы с участием кластеров и малых частиц в буферном газе / Б.М. Смирнов // Успехи физических наук. – 2011. – Т. 181. – № 7. – С. 713-745.

6. Liu, S.-R. Photoelectron spectroscopy of Ti_n^- clusters (n=1-130) / S.-R. Liu, H.-J. Zhai, M. Castro, L.-S. Wang // The Journal of Chemical Physics. – 2003. – V. 118. – I. 5. – P. 2108-2115.

7. Sakurai, M. Magic numbers in transition metals (Fe, Ti, Zr, Nb and Ta) clusters observed by time-flight mass spectrometry / M. Sakurai, K. Watanabe, K. Sumiyama, K. Suzuki // The Journal of Chemical Physics. – 1999. – V. 111. – No 1. – P. 235-238.

8. Панькин, Н.А. Структура изомеров кластеров титана Ti_N (N = 6-15) / Н.А. Панькин // Журнал экспериментальной и теоретической физики. – 2014. – Т. 145. – № 6. – С. 976-983.

9. Михайлов, Е.А. Атомная структура нанокластеров Pd_n ($4 \le n \le 15$) / Е.А. Михайлов, А.Т. Косилов // Физика твердого тела. – 2010. – Т. 52. – Вып. 2. – С. 397-401. 10. Хеерман, Д.В. Методы компьютерного эксперимента в теоретической физике / Д.В. Хеерман. – М.: Наука, 1990. – 210 с.

11. Wang, C.-C. Geometries and magnetisms of the Zr_n (n = 2-8) clusters: The density functional investigations / C.-C. Wang, R-N. Zhao, J-G. Han // Journal of Chemical Physics. -2006. - V. 124. - I. 19. - P. 194301-1-194301-8.

12. **Wang, X-Q.** Density functional theory study of geometry and stability of small Zr_n (n = 2-10) clusters / X-Q. Wang, Z-Y. Jiang, J-Q. Li, Q-L. He, S-Y. Chu // International Journal of Quantum Chemistry. -2011. - V. 111. - I. 1. - P. 182-190.

13. Sebetci, A. Energetics and structures of small clusters: Pt_N , N = 2-21 / A. Sebetci, Z.B. Guvenc // Surface Science. -2003. -V. 66. -I. 1-3. -P. 525-531.

14. **Boyukata, M.** MD study of energetics, melting and isomerization of aluminum microclusters / M. Boyukata, Z.B. Guvenc // Brazilian Journal of Physics. $-2006. - V. 36. - N_{\odot} 3A. - P. 720-724.$

15. Бажин, И.В. Электронная структура наноразмерных металлических кластеров / И.В. Бажин, О.А. Лещева, И.Я. Никифоров // Физика твердого тела. – 2006. – Т. 48. – Вып. 4. – С. 726-731.

16. **Hoover, W.G.** Canonical dynamics – equilibrium phase-space distributions / W.G. Hoover // Physical Review A. – 1985. – V. 31. – I. 3. – P. 1695-1697.

17. Verlet, L. Computer experiments on classical fluids / L. Verlet // Physical Review. – 1967. – V. 159. – I. 1. – P. 98-103.

18. Cleri, F. Tight-binding potentials for transition metals and alloys / F. Cleri, V. Rosato. // Physical Review B. – 1993. – V. 48. – I. 1. – P. 22-33.