УДК 532.6:546.22 ЗАКОН СООТВЕТСТВЕННЫХ СОСТОЯНИЙ ДЛЯ РАЗМЕРНОЙ ЗАВИСИМОСТИ ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ

В.М. Самсонов

Тверской государственный университет, 170002, Россия, Тверь, Садовый пер., 35 samsonoff@inbox.ru

Аннотация: Размерная зависимость температуры плавления нанокластеров T_m проанализирована с использованием соображений подобия и обобщенной формулы Томсона $T_m = T_m^{(\infty)} (1 - \alpha/R)$, где R – радиус частицы, $T_m^{(\infty)}$ – макроскопическая температура плавления, α – параметр, имеющий размерность длины и выступающий в роли параметра приведения для R. С использованием формулы Томсона путем экстраполяции к $T_m = 0K$ проведены расчеты параметра α для ряда металлов с различными типами решетки. Установлено, что в большинстве случаев этот параметр близок по величине к радиусу первой координационной сферы.

Ключевые слова: *температура плавления, размерная зависимость, металлические нанокластеры, термодинамическое подобие.*

Практическое применение наночастиц и наноструктурированных материалов требует знания их физических характеристик, которые зависят от размера частиц. При фазовых переходах, включая плавление, структура и свойства наночастиц качественно изменяются. В качестве примера можно отметить, что нанокластеры переходных металлов Ni и Au обладают свойствами сильных многогранников только при наличии ГЦК-структуры, которая, естественно, разрушается при плавлении. В свою очередь, температура плавления нанокластеров T_m зависит от их радиуса R, т.е. характеризуется наличием размерной зависимости.

Впервые размерная зависимость *T_m* анализировалась еще В. Томсоном, предложившим для ее описания формулу

$$\lambda_{\infty} \frac{T_m^{(\infty)} - T_m}{T_m^{(\infty)}} = \frac{2\sigma_{sl}}{R} \nu_s, \qquad (1)$$

где $T_m^{(\infty)}$ – макроскопическая температура плавления, *R* – радиус частицы, λ_{∞} – макроскопическое значение удельной теплоты плавления, σ_{sl} – межфазное натяжение на границе раздела кристалла с собственным расплавом, v_s – удельный объем твердой (кристаллической) фазы. Большинство аналогов формулы Томсона отвечает соотношению [1]

$$\frac{T_m}{T_m^{(\infty)}} = 1 - \frac{2A}{\rho_s \lambda_\infty R},\tag{2}$$

причем параметр *A* может иметь различный вид в зависимости от выбранной модели плавления малых частиц. В [1] отмечаются три базовых модели:

1) модель гомогенного плавления без жидкой оболочки ($A = \sigma_s - \sigma_l$, где σ_s, σ_l – поверхностные напряжения твердой и жидкой частиц, соответственно);

2) модель плавления с образованием жидкой оболочки ($A = \sigma_{sl}$);

3) модель нуклеации и роста зародыша жидкой фазы (*A* изменяется от низкотемпературного предела $1,5(\sigma_s - \sigma_l)$ до высокотемпературного предела σ_{sl}).

Более общий аналог формулы Томсона (1) может быть записан в виде

$$T_m = T_m^{(\infty)} \left(1 - \alpha/R \right), \tag{3}$$

где *а* – постоянная, имеющая размерность длины. В частности, этому виду соответствует формула

$$T_m = T_m^{(\infty)} \left\{ 1 - \frac{3}{\rho_s \lambda_\infty R} \left[\sigma_s - \sigma_l \left(\rho_s / \rho_l \right)^{2/3} \right] \right\}, \tag{4}$$

которая, согласно [2], дает минимальное значение T_m . Следует только отметить, что формула (2) не соответствует тем вариантам выбора параметра A, которые отмечены в [1].

В свою очередь, формулу (3) можно представить в виде простого безразмерного соотношения

$$T_m^* = 1 - R^{*-1} \tag{5}$$

между приведенной температурой плавления $T_m^* = T_m/T_m^{(\infty)}$ и приведенным радиусом частицы $R^* = R/\alpha$, причем постоянная α вступает в роли параметра приведения, т.е. некоторого характерного линейного масштаба, определяющего размерную зависимость температуры плавления. Согласно (3), при $R = \alpha$ температура плавления должна обращаться в ноль.

Расчетные значения параметра α , найденные с использованием формул (1) и (4) представлены в Таблице 1, причем, $\alpha_1 = 2\sigma_{sl}v_s/\lambda_{\infty}$ отвечает формуле (1), а $\alpha_2 = 3\left[\sigma_s - \sigma_l(\rho_s/\rho_l)\right]/\rho_s\lambda_{\infty}$ — формуле (4). В Таблице 1 приведены для сравнения значения параметра α_2 для нанокластеров некоторых металлов, представленные в монографии [2] со ссылкой на работу [3]. Видно, что значения параметра α_1 имеет один порядок величины, тогда как найденные нами значения параметра α_2 различаются на порядок, а результаты наших расчетов и расчетов [3] могут отличаться даже на два порядка. В связи с этим следует особо отметить, что при расчетах по формуле (4) мы использовали наиболее надежные значения поверхностного натяжения металлов в твердом состоянии, взятые из обзора [4]. Автор обзора [5], посвященного плотности жидких металлов также является известным специалистом в области экспериментального

исследования свойств жидких металлов. Таким образом, найденные нами значения параметра α_2 должны быть вполне достоверными. Малый разброс значений параметра α_1 по сравнению с параметром α_2 позволяет сделать заключение, что исходная формула Томсона (1) является более адекватной, чем ее более поздний аналог (4).

Металл	<i>ρ</i> _s , <i>кг/м</i> ³ [6]	<i>ρ</i> _l , <i>кг/м</i> ³ [5]	λ _∞ , кДж/моль [6]	$\sigma_{_{sl}},$ мДж/м²		-	-		$lpha_2$, нм	
				[7]	Правило Антонова	0 _s , мДж/м² [4]	0 ₁ мДж/м ² [4]	α ₁ , нм	Наши расчеты	[3]
Pb	11336	10969	4,8	40	87	557	470	0,307	0,880	
Cu	8960	7992	13,0	200	123	1473	1350	0,218	0,026	0,407
Ag	10500	9320	11,3	143	235	1155	920	0,260	0,433	
Au	19320	17361	12,6	190	193	1363	1170	0,307	0,259	
In	7310	7023	3,3	43	66	631	565	0,404	0,715	
Со	8900	7760	16,3	342	574	2404	1830	0,278	0,486	
Ni	8910	7905	17,6	378	150	1920	1770	0,283	0,003	0,382
Pt	21450	18910	20,0	323	194	1940	1746	0,294	0,056	
Al	2689	2369	10,8	158	226	1140	914	0,294	0,405	0,443
Ti	4505	4140	15,1	153	288	1938	1650	0,215	0,406	0,580

Таблица 1. Расчет характерных радиусов нанокластера α_1 и α_2

Таблица 2. Значения отношения α_1/r_1 для различных металлов

Металл	Структура объемной фазы [8]	\pmb{lpha}_1 , нм	r ₁ , нм [8]	α_1/r_1
Pb	ГЦК	0,307	0,350	0,88
Си	ГЦК	0,218	0,256	0,85
Ag	ГЦК	0,260	0,289	0,90
Au	ГЦК	0,307	0,288	1,07
In	тетрагональная	0,404	0,325	1,24
Со	ГПУ	0,278	0,250	1,11
Ni	ГЦК	0,283	0,249	1,14
Pt	ГЦК	0,294	0,288	1,02
Al	ГЦК	0,294	0,286	1,03
Ti	ГПУ	0,215	0,289	0,74

Как видно из Таблицы 2 параметр α_1 приблизительно равен радиусу первой координационной сферы r_1 , а отношение α_1/r_1 близко к единице для всех рассмотренных металлов, за исключением *Ті*. Примечательно, что какой-либо выраженной корреляции между отклонением отношения α_1/r_1 от единицы и типом кристаллической решетки, характерным для данного металла, не наблюдается. В частности, Ті отвечает ГПУ-структуре, которая так же, как и ГЦК, относится к плотноупакованным структурам. Вместе с максимальное указанного отношения тем. значение отвечает нанокластерам In, т.е. металла, для которого характерна особая – тетрагональная структура объемной фазы, не характерная для других металлов, представленных в Таблице 2.

Разумеется, представляет интерес сравнить расчетные значения значениями, найденными по экспериментальным параметра α_{1} co размерным зависимостям температуры плавления. К сожалению, однако, экспериментальные данные являются ЭТИ ряде случаев В противоречивыми, хотя они подтверждают, что параметр α_1 равен по порядку величины 1 нм. Однако в количественном отношении результаты разных авторов различаются очень существенно. Так, согласно [1], метод дифракции рентгеновских лучей дает для нанокластеров Pb значение параметра α_1 , равное 0,040 $\square m/m^2$, которое идеально соответствует экспериментальному межфазного значению натяжения σ_{sl} , представленному в Таблице 1. В той же работе для нанокластеров Рb приведена формула

$$T_m(D) = T_m^{(\infty)} (1 - 0.62 / D)$$

диаметр частицы В НМ. Значение где D = 2R величины (0,62/2) *нм* = 0,31 *нм* также очень хорошо согласуется с найденным нами $\alpha_1 = 0,307$ HM. значением параметра Вместе С тем, экстраполяция электронографических результатов для нанокластеров *Pb*, представленных в работе [9], дает для параметра α_1 значение, приблизительно равное 2 *нм*.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 13-02-98006-р-сибирь-а).

Библиографический список:

1. **Peters, K.F.** Melting of *Pb* nanocrystals / K.F. Peters, J.B. Cohen, Y.-W. Chung // Physical Review B. -1998. - V. 57. - I. 21. - P. 13430-13438.

2. **Гусев, А.И.** Наноматериалы, наноструктуры, нанотехнологии / А.И. Гусев. – М.: Физматлит, 2005. – С. 200-212.

3. **Kai, H.Y.** Nanocrystalline materials. A study of their preparation and characterization / H.Y. Kai. – PhD Thesis. – Netherlands, Amsterdam: Universiteit van Amsterdam, 1993. – 113 p.

4. Alchagirov, A.B. Surface energy and surface tension of solid and liquid metals. Recommended values / Alchagirov A.B., Alchagirov B.B., Taova T.M., Khokonov K.B. // Transactions of Joining and Welding Research Institute. – 2001. – V. 30. – P. 287-291.

5. **Ниженко, В.И.** Плотность жидких металлов и ее температурная зависимость / В.И. Ниженко. В кн.: Методы исследования и свойства границ раздела контактирующих фаз. – Киев: Наукова думка, 1977. – С. 125-163.

6. Физические величины. Справочник / под ред. И.С. Григорьева, Е.З. Мейлихова. – М.: Энергоатомиздат, 1991. – 1232 с.

7. Шебзухова, М.А. Межфазное натяжение кристаллической наночастицы в жидкой материнской фазе в однокомпонентной металлической системе / М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов // Физика твердого тела. – 2012. – Т. 54. – Вып.1. – С. 173-181.

8. **Киттель, Ч.** Введение в физику твердого тела / Ч. Киттель. – М.: Наука, 1978. – 792 с.

9. Kofman, R. Melting of clusters approaching 0D / R. Kofman, P. Cheyssac, Y. Lereach, A. Stella // The European Physical Journal D. – 1999. – V. 9. – I. 1-4. – P. 441-444.