УДК 541.67:546.171.8:537.226:537.634

ВАКАНСИОННЫЙ КЛАСТЕР В НИТЕВИДНЫХ КРИСТАЛЛАХ АЗИДА СЕРЕБРА

Л.В. Кузьмина, Е.Г. Газенаур, В.И. Крашенинин, Е.В. Сугатов Кемеровский государственный университет 650043, Кемерово, ул. Красная, 6 specproc@kemsu.ru

Аннотация: В данной работе представлены результаты экспериментальных исследований образования вакансионного кластера в нитевидных кристаллах азида серебра. Показана роль вакансионного кластера в реакционной способности данных материалов. Предложены способы управления временем образования вакансионного кластера.

Ключевые слова: нитевидные кристаллы азида серебра, вакансионный кластер, реакционная способность, примесные дефекты, дислокации.

В настоящее время азиды тяжелых металлов используются в качестве модельных объектов в химии твердого тела. Азид серебра (AgN_3), как и все азиды металлов, является высокочувствительным материалом к различным видам энергетических воздействий и разлагается с выделением газа-азота и образованием металла. При этом обычно измеряют количество выделившегося газа и строят зависимость степени разложения в анионной подрешетке от времени [1].

Ранее обнаружено, что наиболее интенсивно реакция разложения, энергетического инициированная каким либо видом воздействия УФ-облучение). (электрическое, магнитное поля, протекает определенных областях, пространственно совпадающих с выходом краевых дислокаций на поверхность кристалла азида серебра. Среди авторов, исследующих медленное разложение кристаллов азидов тяжелых металлов, существует представление о том, что реакция разложения в анионной подрешетке происходит при локализации двух дырок на катионной вакансии [1]. Азид серебра дефектен по Френкелю с преимущественно подвижными междоузельными катионами серебра (Ag^{+}) . Поверхность кристаллов азида серебра заряжена положительно, а приповерхностная область обогащена отрицательно заряженными катионными вакансиями (V_k^-) . Кроме того, в нитевидных кристаллах азида серебра, выращенных по методике Ф.И. Иванова, описанной в работе [1], с размерами $10 \times 0.1 \times 0.03$ мм³ имеется 1-2 винтовых дислокации, по которым происходит их рост. Также в данных кристаллах возможно наведение краевых дислокаций (до 12 штук). Исходная концентрация примеси (Cu^{2+} , Fe^{2+} , Al^{3+} , Bi^{3+} , Pb^{2+} , Ca^{2+} , Si^{2+} , Ti^{2+} , Mg^{2+}) составляет $10^{16}-10^{17}$ см⁻³. В свою очередь, концентрация анионных и катионных вакансий определяется концентрацией примеси в азиде серебра и должна определяться концентрацией двухзарядных катионов, например, Pb^{2+} .

Известно, что линии краевых дислокаций в нитевидных кристаллах азида серебра отрицательно заряжены [2], поэтому при введении свежей дислокации, положительно заряженные точечные дефекты в течение некоторого времени формируют вокруг нее атмосферу Коттрелла, в результате этого в приповерхностной области нитевидного кристалла на глубине $\approx 5 \div 10~\text{мкм}$ образуется рыхлая структура — вакансионный кластер (ВК) (см. рис. 1). Катионные вакансии образуют комплексы с положительно заряженной примесью ($C^+V_k^-$).

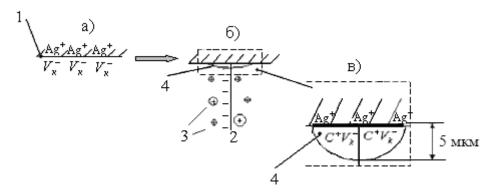


Рис. 1. Процесс формирования вакансионного кластера в кристаллах AgN_3 : 1 — поверхность кристалла AgN_3 , 2 — линия краевой дислокации, 3 — атомы заряженной примеси, 4 —вакансионный кластер, Ag^+ — катионы серебра, V_k^- — катионные вакансии, $C^+V_k^-$ — комплекс примесь — катионная вакансия.

После формирования ВК, который фиксируется с помощью ямок травления (для травления использовали 1N водный раствор тиосульфата натрия), кристалл азида серебра становится реакционноспособным, т.е. подвергается разложению. Продукты разложения выделяются из областей, совпадающих с ямками травления, следовательно, ВК — это и есть реакционная область (РО).

Предположим, что ВК является центром закрепления дислокаций. Проведены исследования влияния электрического поля на процесс преодоления дислокацией стопора — ВК, в процессе его образования (до 1 мин). С увеличением времени формирования ВК, необходимо прикладывать большую величину напряженности электрического поля, чтобы дислокация могла не стопориться, а совершать движение. Из чего можно заключить, что процесс образования ВК происходит медленно, в соответствие с чем, сила стопора, удерживающего дислокацию, увеличивается. Результаты экспериментов показаны в Таблице 1.

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов

Таблица 1. Напряженность бесконтактного электрического поля, способствующего преодолению дислокациями центров закрепления в процессе их формирования в кристаллах азида серебра.

Время формирования ВК, с	Напряженность электрического поля, В/см
менее 10	4
10	1000
20	2000
от 30 до 50	3000
60	более 3000

Как видно из представленной зависимости, ВК, образующейся за время, превышающее 1 $\mathit{мин.}$, преодолевается с помощью сильного электрического поля (3 $\mathit{кB/cm}$). Но, учитывая высокую чувствительность данных материалов к внешним воздействиям, использование сильного электрического поля для изменения дислокационной структуры является не эффективным, поскольку может ухудшить рабочие характеристики данных материалов.

В то же время известно, что краевые дислокации в азиде серебра являются линейными магнитными доменами [2]. Поэтому можно предложить наиболее перспективный метод управления дислокационной структурой кристаллов азида серебра, а именно использовать магнитное поле. Что касается времени образования ВК до 1 *мин*. достаточно использование электрического поля напряженностью 4–3000 *B/см*.

После преодоления стопоров появляется возможность перемещать дислокации в любую часть кристалла, формируя тем самым сверхреакционную область, или же выводя дислокации из кристалла, делать их более стабильными к различным видам воздействия.

Кроме того, время образования атмосферы Коттрелла в области дислокации (вансионного кластера) можно изменять. Сначала из кристалла выводим дислокации, для чего помещаем его в магнитное поле определенной напряженности на определенное время, а это возможно благодаря магнитопластическому и магнитоэлектрическому эффектам, обнаруженным в кристаллах азида серебра [2,3]. Локализацию дислокаций определяем методом ямок травления, который в этом случае дает отрицательный результат. После подвергаем кристалл чего электрохимической очистке, ДЛЯ системе $Ga - AgN_3 - Ga$ ЭТОГО К

прикладываем напряжение 100 B на 1 cm на определенное время (τ_E). Кристаллы, полученные таким образом, исследовали на реакционную способность (выделение газообразных продуктов разложения) после действия контактного электрического поля), а также на наличие ямок травления, для чего методом изгибной деформации вводим свежие дислокации. На рис. 2 представлена зависимость времени появления реакционной способности (τ_{PO}) (это совпадает со временем возможности обнаружения дислокаций методом ямок травления) от времени электрохимической очистки (τ_{3D}).

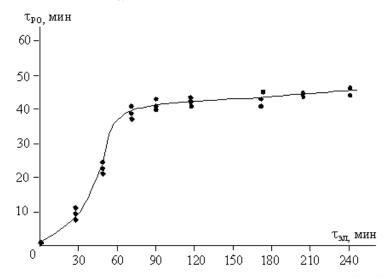


Рис. 2. Зависимость времени образования вакансионного кластера (РО) от времени электроочистки в кристаллах азида серебра.

Концентрация примеси от времени электроочистки в кристаллах азида серебра контролировалась методом эмиссионного спектрального анализа. После 70 минут электроочистки концентрация примеси снижалась на 30%. Таким образом, время образования вакансионного кластера (реакционной области) можно изменять в пределах от 1 до 40 минут и в течение этого времени кристаллы азида серебра являются стабильными к внешним энергетическим воздействиям.

Библиографический список:

- 1. **Захаров, В.Ю.** Медленное разложение азидов серебра и свинца / В.Ю. Захаров, В.И. Крашенинин. Томск: Изд-во НТЛ, 2006. 168 с.
- 2. **Крашенинин, В.И.** Моделирование дефектной структуры в кристаллах азида серебра / В.И. Крашенинин, Л.В. Кузьмина, Е.Г. Газенаур, В.И. Гасанова // Вестник Томского государственного университета. Приложение. 2006. № 19. С. 103-104.
- 3. **Кузьмина, Л.В.** Магнитоиндуцированное движение дислокаций в кристаллах азида серебра / Л.В. Кузьмина, М.А Дорохов, В.И. Крашенинин // Фундаментальные проблемы современного материаловедения. 2006. № 1. С. 90-93.