УДК 621.315

ДВУХСЛОЙНЫЕ НАНОСТРУКТУРИРОВАННЫЕ ${\rm Al}_2{\rm O}_3$ МЕМБРАНЫ, СИНТЕЗИРОВАННЫЕ ЭЛЕКТРОХИМИЧЕСКИМ АНОДИРОВАНИЕМ В ЩАВЕЛЕВОКИСЛОМ ЭЛЕКТРОЛИТЕ

Д.Л. Шиманович

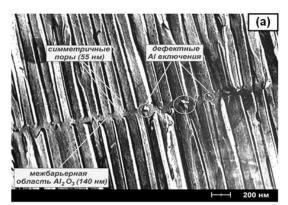
Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь, 220013, Минск, ул. П. Бровки, 6 ShDL@tut.by

Аннотация: Разработаны технологические способы формирования пористых двухслойных Al_2O_3 мембран толщиной 73-216 *мкм* с диаметром пор ~55 *нм* с использованием двухстороннего сквозного анодирования в электролите щавелевой кислоты и последующего биполярного анодирования. Получены высокая формо- и трещиноустойчивость при высокотемпературных (>500°C) воздействиях, теплопроводность ~20-23 $Bm/M\cdot K$, диэлектрическая проницаемость ~7,2-7,4.

Ключевые слова: алюминий, электрохимическое анодирование, пористый оксид алюминия, барьерный слой, биполярное анодирование, мембрана, наноструктурированный материал.

Объект исследований – наноструктурированные бимембраны на основе свободных двухслойных пленок пористого Al_2O_3 , сформированные методом двухстороннего сквозного анодирования И последующей обработкой биполярным анодированием и химическим травлением. Перспективность их использования определяется высокоупорядоченным наноструктурным характером их ячеисто-пористой морфологии, которая контролироваться электрохимическими температурными тэжом И режимами при проведении электрохимического процесса анодирования. Мембраны основе свободных пленок Al_2O_3 , полученные двухстадийным, но односторонним анодированием Alфольги химическим удалением остаточного Al, широко освещены в научных изданиях [1-4].

Однако такая методика обладает недостатками, связанными с необходимостью маскирования одной из сторон Al, с необходимостью травления непроанодированного Al, химического получением неплоскостных с признаками коробления Al_2O_3 мембранных структур из-за механических напряжений на границе роста $Al - Al_2O_3$, отсутствием формоустойчивости таких мембран при высокотемпературных испытаниях и эксплуатации, наличием у широкоформатных мембран разброса по толщине. В настоящей работе представлены технологические приемы бимембран формирования основе на Al_2O_3 использованием двухстадийного двухстороннего анодирования до полного сквозного прокисления исходных АІ пластин. Однако основная проблема при таком


Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов

подходе связана с высокими требованиями к степени шероховатости и качеству обработки поверхности исходного Al материала, иначе на заключительной глубокого стадии сквозного двухстороннего анодирования возникает эффект отсечки подвода потенциала, приводящий к появлению локальных недоанодированных Al включений внутри свободных Al_2O_3 бипластин в области стыка двух встречных барьерных осуществлялась Ликвидация Alвкраплений применением биполярного анодирования после основной стадии глубокого сквозного анодирования.

В качестве исходного материала использовалась АІ фольга (99,99 %) ~60, 110, 160 мкм. После многократной прокатки полированные валики осуществлялась ее терморихтовка под давлением ~ $10^7 \ \Pi a$ при $350^{\circ}C$ в течение 1 ν для снятия механических напряжений и увеличения параметров пластичности. Далее штамповкой формировались $60\times48~MM$ образцы размером И осуществлялась предварительная химическая обработка в $CrO_3:H_2SO_4$ (1:100) в течение 2-3 мин. Для микронеровностей сглаживания И устранения проводилась электрохимическая полировка Al в электролите на основе хлорной и уксусной кислот (22 %:78 %) при $T \sim 7-9^{\circ}C$ при напряжении 25-27B в течение 1 мин. После проведенных операций толщина Al пластин составляла ~50, 100, 150 мкм. Процесс двухстороннего анодирования проводился в две стадии в 7 % электролите $H_2C_2O_4$ при $T \sim 16-18^{\circ}C$ при постоянном напряжении $\sim 55B$. Предварительная стадия анодирования длилась ~10 мин с последующим селективным химическим травлением сформированного Al_2O_3 в растворе $CrO_3:H_3PO_4:H_2O$ при $85^{\circ}C$ в течение 5 мин, в результате чего поверхность Al наследовала упорядоченную матрицу рельефных наноточек пористого Al_2O_3 . Последующая стадия анодирования Al с таким текстурированием поверхности приводила к формированию Al_2O_3 с высокой степенью упорядоченности. Процесс глубокого двухстороннего сквозного пористого анодирования проводили до падения силы тока в электрохимической ванне практически до нуля при смыкании двух встречнорастущих оксидных слоев.

В результате проведенных исследований были сформированы свободные анодные наноструктурированные бипластины с толщиной двухслойного $Al_2O_3 \sim 73$, 145, 216 $m\kappa m$, диаметром симметрично расположенных двухсторонних пор ~ 55 m, общей толщиной барьерных слоев ~ 140 m, но с наличием дефектных локальных n включений произвольной формы и разной величины (см. рис. 1 а). Коэффициент объемного роста при абсолютном превращении n0 в n10 составил

 \sim 1,44-1,46. На рис. 1 б продемонстрировано СЭМ фото, характеризующее упорядоченную матрицу входных отверстий нанопор одной из поверхностей свободной Al_2O_3 бипластины.

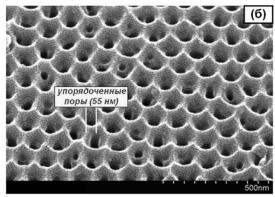
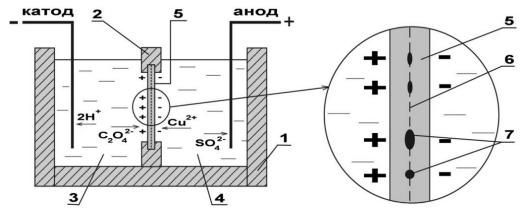
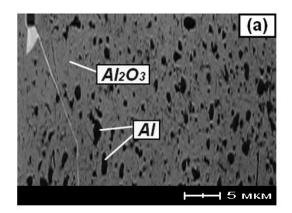
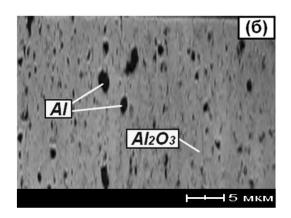


Рис. 1. СЭМ фото свободной анодной наноструктурированной Al_2O_3 бимембраны толщиной $\sim 145~мкм$ с упорядоченной матрицей пор $\sim 55~нм$, полученной двухсторонним сквозным анодированием: а) поперечное сечение, б) вид сверху.




Рис. 2. Схематическое обоснование биполярного анодирования: 1 — двухкамерная электролитическая ванна, 2 — изолирующая перегородка, 3 — электролит анодирования в катодной камере, 4 — буферный электролит в анодной камере, 5 — свободная Al_2O_3 бипластина (образец), 6 — область двух встречных барьерных слоев Al_2O_3 , 7 — недоокисленные Al включения.


Основная идея метода биполярного анодирования заключалась в использовании двухкамерной электролитической ванны (см. рис. 2), где образец свободной Al_2O_3 биструктуры, но с дефектными зонами токопроводящих Al вкраплений внутри нее, помещался как изолирующая перегородка, с одной стороны которой использовался электролит анодирования (7 % $H_2C_2O_4$), а с другой стороны — буферный электролит (10 % $CuSO_4$). В первую из камер помещался катод (–), во вторую — анод (+). При включении тока ($U \sim 55B$) на одной стороне бипластины напротив

Al включений появлялся положительный заряд, она становилась анодом, и проходил процесс анодного доокисления (анодирования) этих включений, а вторая заряжалась отрицательно, становилась катодом, и наблюдалось восстановление катионов (Cu^{2+}) буферного электролита на катодной стороне напротив Al включений с гарантированным отсутствием искрений и прожогов окисленного слоя в таких зонах.

На рис. 3 представлены сравнительные фото изготовленных бимембран, характеризующие эволюцию исчезновения дефектных Al включений при проведении процесса биполярного анодирования в течение различного времени -0, 15, 30 $\mathit{мuh}$.

Травление медных налетов для окончательной химической очистки бимембран осуществляли в $60 \% HNO_3$ в течение $2-3 \ muh$.

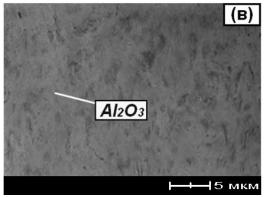


Рис. 3. Фото бимембранных Al_2O_3 структур до и после проведения процесса биполярного анодирования в течение различного времени: а) 0 мин, б) 15 мин, в) 30 мин.

Разработана также методика модификации пор свободных двухслойных мембран на основе нанопористого Al_2O_3 путем проведения дополнительной обработки (последующего химического травления) в фосфорной H_3PO_4 кислоте. В результате происходит увеличение диаметра

Межвузовский сборник научных трудов Выпуск 5, 2013

пор до \sim 70 *нм* и увеличение пористости Al_2O_3 с получением однородного размера пор за счет изотропного травления их стенок без опасности их механического разрушения. Кроме того, происходит снижение концентрации примесных анионов электролита, присутствующих на внешней стороне стенок пор и влияющих на процессы, происходящие при дальнейшем применении мембранных структур.

Изготовленные наноструктурированные Al_2O_3 мембранные структуры обладают высокой формоустойчивостью и стойкостью к трещинообразованиям при высокотемпературных (>500°C) воздействиях. Коэффициент теплопроводности Al_2O_3 составил $\sim 20-23$ $Bm/m\cdot K$, а относительная диэлектрическая проницаемость $\sim 7, 2-7, 4$.

Библиографический список:

- 1. **Шиманович,** Д.Л. Электрохимические приемы формирования свободных наноструктурированных матриц из анодного Al_2O_3 со сквозными модифицированными порами / Д.Л. Шиманович, Д.И. Чушкова, В.А. Сокол // Наноэлектроника, нанофотоника и нелинейная физика: тезисы докладов VII Всероссийской конференции молодых ученых, Саратов (24-26 сентбря 2012 года). Саратов: Изд-во Саратовского университета, 2012. С. 188-189.
- 2. **Shimanovich, D.L.** Free nanostructured membranes formation of anodic Al_2O_3 with open-ended pores / D.L. Shimanovich, V.A. Sokol, V.A. Jakovceva, D.I. Chushkova // Современные средства связи: : сборник материалов XVII международной научнотехнической конференции, Минск (16-18 октября 2012 года). Минск: Высший государственный колледж связи, 2012. С. 140-141.
- 3. **Шиманович,** Д.Л. Влагочувствительные сенсорные элементы на основе мембранных наноструктур из пористого Al_2O_3 / Д.Л. Шиманович, Д.И. Чушкова, В.А. Сокол // Наноэлектроника, нанофотоника и нелинейная физика: тезисы докладов VII Всероссийской конференции молодых ученых, Саратов (24-26 сентбря 2012 года). Саратов: Изд-во Саратовского университета, 2012. С. 190-191.
- 4. **Shimanovich, D.L.** Membrane humidity sensor based on the nanostructured porous Al_2O_3 / D.L. Shimanovich, V.A. Sokol, V.A. Jakovceva, D.I. Chushkova // Современные средства связи: сборник материалов XVII международной научно-технической конференции, Минск (16-18 октября 2012 года). Минск: Высший государственный колледж связи, 2012. С. 138-139.