А.И. Наумова

Программирование задач медико-биологической направленности

Учебный практикум по информатике для учащихся естественно-научного профиля общеобразовательных учреждений

> Гверь 2017

Министерство образования и науки Российской Федерации Муниципальное общеобразовательное учреждение "Тверской лицей"

А.И. Наумова

ПРОГРАММИРОВАНИЕ ЗАДАЧ МЕДИКО-БИОЛОГИЧЕСКОЙ НАПРАВЛЕННОСТИ

Учебный практикум по информатике для учащихся естественно-научного профиля общеобразовательных учреждений

УДК 61:004+57:004(075.8)

ББК Р.в 635я73-5+Е.в 635я 73-5

H 34

Рецензент

Евгения Александровна Ищукова, доцент кафедры безопасности информационных технологий Института компьютерных технологий и информационной безопасности Южного федерального университета, кандидат

технических наук

Наумова А. И.

НЗ4 Программирование задач медико-биологической направленности: учебный практикум. – Тверь: Твер. гос. ун-т,

2017. – 58 c.

ISBN 978-5-7609-1267-1

Данный учебный практикум основан на педагогической методике по реализации принципа межпредметной мультидисциплинарной интеграции на уроках информатики в старших классах естественно-научного профиля.

Подробно рассмотрено решение задач из курса биологии, физиологии, генетики и иридодиагностики с использованием языков программирования PascalABC.NET и Visual Basic, приведены примеры построения и исследования информационных моделей в электронных таблицах Microsoft Office Excel по фармакологии и дана разработка программы компьютерного тестирования полученных знаний на языке Delphi. При этом большое внимание уделено формированию у учащихся алгоритмического и системного мышления, а также практических умений и навыков в области современных информационных технологий.

Для преподавателей информатики и учащихся старших классов естественно-научного профиля, а также для студентов медицинских вузов и практикующих врачей.

УДК 61:004+57:004(075.8) ББК Р.в 635я73-5+Е.в635я 73-5

© Наумова А.И., 2017 © Тверской государственный

университет, 2017

ISBN 978-5-7609-1267-1

Оглавление

Аннотация	
Глава 1. Программирование задач из курса общей биологии	
и физиологии человека на языке PascalABC.NET	4
Практическая работа 1.1	4
Репликация (удвоение) ДНК	
Практическая работа 1.2	6
Синтез и-РНК. Транскрипция (переписывание)	
Практическая работа 1.3	9
Цитологические основы закономерностей наследования	
Практическая работа 1.4	12
Определить группу крови и резус-фактор человека	
Глава 2. Построение и исследование информационных	
моделей в приложении MS Excel	17
Практическая работа 2.1	17
Математическое моделирование расчётов из курса лекарственной	
терапии для детей. Правило Кларка и Правило Янга	
Практическая работа 2.2	22
Математическое моделирование расчётов из курса лекарственной	
терапии для детей. Исходя из площади поверхности тела	
и Дозис-Фактор по Харнаку	
Глава 3. Построение и исследование информационных	
МОДЕЛЕЙ НА ЯЗЫКЕ ОБЪЕКТНО-ОРИЕНТИРОВАННОГО	
ПРОГРАММИРОВАНИЯ VISUAL BASIC	29
Практическая работа 3.1	29
Экспертные системы на примере решения задачи из курса генетики.	
От чего зависит цвет глаз и как его рассчитать?	
Практическая работа 3.2	34
Экспертные системы на примере решения задачи из курса	
иридодиагностики. Как поставить диагноз пациенту?	
Глава 4. Разработка проекта на языке delphi:	
"ПРОГРАММА КОМПЬЮТЕРНОГО ТЕСТИРОВАНИЯ"	42
Практическая работа 4.1	42
Разработка программы компьютерного тестирования	
Список использованной литературы и интернет-ресурсов	55

Глава 1. Программирование задач из курса общей биологии и физиологии человека на языке PascalABC.NET

Практическая работа № 1.1

Тема: Репликация (удвоение) ДНК.

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, среда программирования PascalABC.NET.

Цель работы: научиться работать с символьным массивом, циклом for, while и оператором case.

Задание: Участок ДНК имеет следующий состав нуклеотидов:

АГТАЦГГЦАТГТАГЦ. Напишите нуклеотидный состав дочерних ДНК, образовавшихся в результате *репликации* исходного фрагмента ДНК. Полученный результат выдать на экран компьютера.

Словесное описание алгоритма.

Принцип комплементарности, лежащей в основе структуры ДНК, позволяет понять, как синтезируются новые молекулы ДНК незадолго перед делением клетки. Этот синтез обусловлен замечательной способностью молекулы ДНК к удвоению и определяет передачу наследственных свойств от материнской клетки к дочерним.

Двойная спираль ДНК под влиянием фермента начинает с одного конца раскручиваться, и на каждой цепи из находящихся в окружающей среде свободных нуклеотидов собирается новая цепь. Сборка новой цепи в точном соответствии с принципом комплементарности. Против А встает Т, против Г – Ц, против Ц – Г, против Т – А. В результате вместо одной молекулы ДНК *возникают две молекулы* такого же точно нуклеотидного состава, как и первоначальная. Одна цепь в каждой вновь образовавшейся молекуле ДНК происходит из первоначальной молекулы, а другая синтезируется вновь.

Программный код на языке PascalABC.NET

program replik;

var

dnk, dnkd: array[1..30] of char; // объявить исходные данные

k, i: integer;

```
begin
 writeln('Репликация ДНК');
 writeln;
 write('Введите структуру ДНК:');
                                     //идентификация переменных
 i := 1;
 k := 1;
 while not eoln do
 begin
                                     //заполнить исходный массив ДНК
  read(dnk[i]);
  i += 1; k += 1;
 end;
 for i := 1 to k - 1 do
 begin
  case dnk[i] of
                                     //сформировать массив дочерней ДНК
   'A': dnkd[i] := 'T';
   '∐': dnkd[i] := 'Γ';
   'T': dnkd[i] := 'A';
   'Γ': dnkd[i] := 'Ц';
  end;
 end;
 writeln;
 writeln('Исходная ДНК:');
 write('...-');
 for i := 1 to k - 1 do
  write(dnk[i], '-');
                                     //распечатать исходный массив
 write('...');
 writeln; writeln;
 writeln('Дочерняя ДНК:');
 write('...-');
```

```
for i := 1 to k - 1 do
```

write(dnkd[i], '-'); //распечатать сформированный массив

write('...');

end.

Компиляция и тестирование программного кода.

Запустить программный код на компиляцию и выполнение, выполнив команды *Программа - Выполнить* или *нажать на F9*. Тестовый пример: Исходная ДНК: АГТАЦГГЦАТГТАГЦ (*puc. 1*).

Окно вывода		×
Репликация ДНК		*
Введите структуру ДНК:АГТАЦГГЦАТГТАГЦ		
Исходная ДНК:		
А-Г-Т-А-Ц-Г-Г-Ц-А-Т-Г-Т-А-Г-Ц		
Дочерняя ДНК:		
I-U-A-I-I'-U-U-I'-I-A-U-A-I-U-I'		
		-
📃 Окно вывода 🔀 Список ошибок 📋 Сообщения компилятора		
Компиляция прошла успешно (37 строк) Строка 1 Столбец 1		

Рис. 1. Выполнение программы в среде PascalABC.NET

Практическая работа № 1.2

Тема: Синтез и-РНК. Транскрипция (переписывание).

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, среда программирования PascalABC.NET.

Цель работы: научиться работать с символьным массивом, циклом for, while и оператором case.

Задание: Одна из цепочек молекул ДНК имеет такую последовательность нуклеотидов: АГТАЦЦГАТАЦТЦГАТТТАЦ. Какую последовательность нуклеотидов имеет и-РНК, закодированной в данном фрагменте ДНК? Вновь сформированную цепочку высветить на экране.

Словесное описание алгоритма.

Синтез белка протекает на рибосомах, а информация о структуре белка зашифрована в ДНК (дезоксирибонуклеиновая кислота), расположенной в ядре. Как же информация из ядра поступает в цитоплазму? Передача информации осуществляется с помощью и-РНК (информационные рибонуклеиновые кислоты), которые синтезируются на одной из цепей участка молекулы ДНКгена и в точности повторяют его структуру.

Чтобы понять, каким образом состав и последовательность расположения нуклеотидов в гене могут быть "переписаны" на и-РНК, вспомним принцип *комплементарности*, на основании которого построена двухспиральная молекула ДНК. Это действует и при синтезе и-РНК. Против каждого нуклеотида одной из цепей ДНК встает комплементарный нуклеотид и-РНК. (Напомним, что в РНК вместо нуклеотида с азотистым основанием Т присутствует нуклеотид с азотистым основанием У). Таким образом, против Г ДНК встает Ц РНК, против Ц ДНК – Г РНК, против А ДНК – У РНК, против Т ДНК – А РНК. В результате образующаяся цепочка и-РНК представляет собой точную копию второй цепи.

Таким путем информация, содержащаяся в гене, как бы переписывается на и-РНК. Этот процесс называется *транскрипцией (переписывание)*. Затем молекулы и-РНК направляются к месту синтеза белка, т. е. к рибосомам. Туда же из цитоплазмы поступают аминокислоты, из которых строится белок. В цитоплазме клеток всегда имеются аминокислоты, образующиеся в результате расщепления белков пищи.

Программный код на языке PascalABC.NET

program sintez;

var

dnk, irnk: **array**[1..30] **of** char; // объявить исходные данные i, k: integer;

begin

```
writeln('Синтез и-РНК по структуре ДНК'); writeln;
 write('Введите структуру ДНК: ');
 i := 1; k := 1;
                                     // идентификация переменных
 while not eoln do
 begin
                                      // заполнить исходный массив
  read(dnk[i]);
  i += 1; k += 1;
 end;
 for i := 1 to k - 1 do
 begin
  case dnk[i] of
                                      // сформировать массив и-РНК
   'A': irnk[i] := 'Y';
   'U': irnk[i] := '\Gamma';
   'T': irnk[i] := 'A';
   '\Gamma': irnk[i] := '\Pi';
  end; end; writeln;
 // Распечатать исходный массив
 Writeln('Исходная ДНК: '); write('...-');
 for i := 1 to k - 1 do write(dnk[i], '-'); writeln('...');
 writeln:
 // Распечатать сформированный массив
 Writeln('Синтезированная и-РНК:'); write('...-');
 for i := 1 to k - 1 do write(irnk[i], '-'); writeln('...');
end.
Компиляция и тестирование программного кода.
```

Запустить программный код на компиляцию и выполнение, выполнив команды *Программа – Выполнить* или *нажать на F9*. Тестовый пример: Исходная ДНК: АГТАЦЦГАТАЦТЦГАТТТАЦ (*puc. 1*).

Окно вывода			ąχ
Синтез и-РНК по структуре ДНК			^
Введите структуру ДНК: АГТАЦЦГАТАЦТЦГАТТТАЦ			
Исходная ДНК: А-Г-Т-А-Ц-Ц-Г-А-Т-А-Ц-Т-Ц-Г-А-Т-Т-Т-А-Ц			
Синтезированная и-РНК: У-Ц-А-У-Г-Г-Ц-У-А-У-Г-А-Г-Ц-У-А-А-А-У-Г			
🔄 Окно вывода [遏 Список ошибок 🛛 🔄 Сообщения компилятора			Ŧ
Компиляция прошла успешно (30 строк)	Строка 1	Столбец 1	

Рис. 1. Выполнение программы в среде PascalABC.NET

Практическая работа № 1.3

Тема: Цитологические основы закономерностей наследования.

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, среда программирования PascalABC.NET.

Цель работы: научиться работать со строковым массивом, циклом for.

Задание: Определить вероятность рождения (в процентах) голубоглазых детей в семье, где отец и мать – кареглазые гетерозиготы. А – признак *карих* глаз, а – признак *голубых* глаз. Результат получить на экране в виде решётки Пинетта.

Словесное описание алгоритма.

В чём причина расщепления? Почему при гибридизации не возникает стойких гибридов, а наблюдается расщепление в строго определенных числовых соотношениях?

Для объяснения расщепления Мендель предложил гипотезу чистоты гамет, которая в дальнейшем получила полное подтверждение в цитологических исследованиях.

Связь между поколениями при половом размножении осуществляется

через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные факторы – *гены*, которые определяют развитие того или иного признака. Обозначим ген, определяющий *доминантный признак*, буквой A, а соответствующий ему *рецессивный ген* – буквой а. Обозначим соединение гамет, несущих гены A и a, знаком умножения: Aa. Как видно, возникающая в результате гетерозиготная форма имеет оба гена, как доминантный, так и рецессивный – Aa. Гипотеза чистоты гамет утверждает, что у гибридной (гетерозиготной) особи половые клетки чисты, т.е. имеют по одному гену из данной пары. Это означает, что у гибрида Aa будут в равном числе возникать гаметы с геном A (доминантный ген) и с геном a (рецессивный ген). Какие же между ними возможны сочетания? Очевидно, равновероятны *четыре комбинации*, поясняемые следующей схемой (*табл. 1*):

Таблица № 1. Сочетания генов

гаметы	Α	a
А	AA	Aa
а	aA	aa

В результате четырех комбинаций получатся сочетания AA, Aa, aA, aa. Первые три сочетания дадут особей с *доминантным* признаком, а четвертое – с *рецессивным*.

Программный код на языке PascalABC.NET

program genetika;

var

```
r: array[1..2, 1..2] of string; //объявить исходные данные
```

i, j, k: integer;

p: real;

begin

```
writeln('Решётка Пинетта'); writeln;
```

writeln('_____');

```
writeln('!гаметы ! А ! а !');
r[1, 1] := 'AA';
                                   //заполнить исходный массив
 r[1, 2] := 'Aa';
r[2, 1] := 'aA';
 r[2, 2] := 'aa';
 k := 0;
 for i := 1 to 2 do
                             //распечатать таблицу
 begin
  writeln('_____');
  if i = 1 then write('! A ') else write('! a ');
  for j := 1 to 2 do
  begin
   write('! ', r[i, j], ' ');
   if r[i, j] = 'aa' then k += 1;
  end;
  write('!'); writeln;
 end;
 p := k * 100 / 4;
                                   //вычислить процент
 writeln(' '); writeln;
 writeln('Вероятность рождения голубоглазых');
 writeln('детей у кареглазых родителей');
 writeln('составляет ', p:5:2, ' процентов');
end.
```

Компиляция и тестирование программного кода.

Запустить программный код на компиляцию и выполнение, выполнив команды *Программа - Выполнить* или *нажать на F9 (puc. 1)*.

OK	10 86480	дa:					ų	×
Per	рётка	Пи	Herr	ra				-
1 21	меты	1	A	ŧ	a	1		
1	A	ţ.)	AA	1	Aa	ī		
ŧ	a	1	۵À	1	aa	1		
Вер	роятно гей у ставля	Ka Ka	ь ро рету 25	ожд 1азі 5.0	ения ых р о г	г голубоглазых родителей процентов		
	Окно вы	вод	a []	30	писо	социбок 📳 Сообщения компилятора		-
		_	_	-				

Рис. 1. Выполнение программы в среде PascalABC.NET

Практическая работа № 1.4

Тема: Определить группу крови и резус-фактор человека.

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, среда программирования PascalABC.NET.

Цель работы: научиться работать со строковым массивом, циклом for, while и оператором case.

Задание: Определить группу крови ребёнка и его резус-фактор по группам крови родителей и их резус-факторам.

Словесное описание алгоритма.

За группу крови и резус-фактор человека отвечает *по одной паре аллельных* (парных) генов. В зависимости от их распределения в процессе мейоза по гаметам и того, какие родительские гаметы встречаются при оплодотворении, происходит комбинация генов с различной вероятностью их проявления в фенотипе. Поэтапное решение задачи в программе отмечено комментариями.

Программный код на языке PascalABC.NET

program grkr;

var

rf: **array**[1..4] **of** string; //объявить исходные данные

gr: array[1..9] of string;

k, m: string;

a, b, f, v, i, j, n, e, o, z: integer;

begin

```
writeln ('Определить группу крови и резус-фактор ребенка');
writeln ('по данным родителей');
writeln ('Введите группу крови');
write ('отца: ');
readln (a);
write ('матери: ');
readln (b);
writeln ('BBegure pesyc-\phiaktop(1(+)/0(-))');
write ('отца: ');
readln (f);
write ('матери: ');
readln (v);
case a of
                              //определение формулы группы крови отца
  1: k := '00'; 2: k := 'A0'; 3: k := 'B0'; 4: k := 'AB';
end :
case b of
                              //определение формулы группы крови матери
  1: m := '00' ; 2: m := 'A0' ; 3: m := 'B0' ; 4: m := 'AB' ;
end :
//комбинирование родительских формул крови с образованием новых
rf [1] := copy (k, 1, 1) + copy (m, 1, 1);
rf [2] := copy (k, 1, 1) + copy (m, 2, 1);
rf [3] := copy (k, 2, 1) + copy (m, 1, 1);
rf [4] := copy (k, 2, 1) + copy (m, 2, 1);
```

//формирование массива всех возможных комбинаций генов,

//обуславливающих разные группы

gr [1] := '00'; gr [2] := 'A0'; gr [3] := '0A'; gr [4] := 'AA'; gr [5] := 'B0'; gr [6] := '0B'; gr [7] := 'BB'; gr [8] := 'AB'; gr [9] := 'BA';

//начальные значения переменных для вычисления процентов

n := 0; e := 0; o := 0; z := 0;

for i := 1 to 4 do

begin

j := 1;

```
while rf [i] <> gr [j] do j := j + 1;
```

//определение процентного соотношения групп крови

//в вероятности их установления

 $\boldsymbol{case \; j \; of}$

end; end ;

writeln;

```
      writeln ('Вероятность наследования ребенком');

      writeln ('групп крови в процентном отношении');

      writeln ('1-я группа - ', n, '%');

      writeln ('2-я группа - ', e, '%');

      writeln ('3-я группа - ', o, '%');

      writeln ('4-я группа - ', z, '%');

      case f + v of
      //определение резус-фактора

      2:
```

begin

writeln ('Вероятность проявления у ребенка положительного') ; writeln ('резус-фактора (+) - более 90%') ; end ; 0: writeln ('У ребенка отрицательный резус-фактор (-)');

1:

begin

writeln ('Вероятность проявления у ребенка положительного') ;

```
writeln ('peзус-фактора (+) - 75%') end ; end ;
```

end.

Компиляция и тестирование программного кода.

Запустить программный код на компиляцию и выполнение с тестовыми примерами согласно *табл. 1* и *табл. 2*, выполнив команды *Программа* - *Выполнить* или *нажать на F9 (рис. 1, рис. 2)*.

Input	Output									
Группы крови родителей	Возможная группа крови ребенка (вероятность, %)									
I + I	I (100%)									
I + II	I (50%)	II (50%)								
I + III	I (50%)		III (50%)							
I + IV		II (50%)	III (50%)							
II + II	I (25%)	II (75%)								
II + III	I (25%)	II (25%)	III (25%)	IV (25%)						
II + IV		II (50%)	III (25%)	IV (25%)						
III + III	I (25%)		III (75%)							
III + IV		II (25%)	III (50%)	IV (25%)						
IV + IV		II (25%)	III (25%)	IV (50%)						

Таблица № 1. Описание входных и выходных данных по группе крови

Таблица № 2. Описание входных и выходных данных по резус-фактору

Input	Output
Резус-фактор у родителей	Резус-фактор у ребенка
Положительный (RR, Rr)	Положительный (Rr) или
и отрицательный (rr)	отрицательный (rr)
Отрицательный (rr)	Отрицательный (rr)

Окно вывода	â	×
Определить группу крови и резус-фактор ребенка		٨
по данным родителей		
Введите группу крови		
отца: 1		
Marepw: 1		
Bsedwre pesyc-фaktop(1(+)/0(-))		
orna: 1		
Marepu: 1		
Вероятность наследования ребенком		
групп крови в процентном отношении		
1-s rpynna - 100%		
2-g rpynna - 0%		
3-g rpynna - 0%		
4-s rpynna - 0%		
Вероятность проявления у ребенка положительного		
резус-фактора (+) - более 90%		
	_	*
🔄 Окно вывода 🛛 🎇 Список ошибок 🔲 Сообщения компилятора		
Компиляция прошла успешно (62 строк) Строка 1 Столбец 1		

Рис. 1. Выполнение по тесту № 1 в среде PascalABC.NET

Рис. 2. Выполнение по тесту № 6 в среде PascalABC.NET

Практические задания для самостоятельного выполнения

В Практической работе 1.4 рассмотрено 4 группы крови, которые в России принято делить на I (0), II (A), III (B), IV (AB). В международной классификации группы обозначаются аббревиатурой: I (0ab), II (Ab), III (Ba), IV (AB0).

- 1. Напишите программу с обозначениями групп крови по международной классификации.
- 2. Подготовьте тесты.
- 3. Запустите программный код на компиляцию и выполнение.

Глава 2. Построение и исследование информационных моделей в приложении MS Excel

Практическая работа № 2.1

Тема: Математическое моделирование расчётов из курса лекарственной терапии для детей. Правило Кларка и Правило Янга.

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, офисное приложение MS Excel 2007.

Цель работы: научиться исследовать интерактивные компьютерные модели в приложении MS Excel.

Задание: Рассчитать дозы лекарственного препарата для детей по правилам Кларка и Янга.

Словесное описание алгоритма.

Лекарственное средство детям принято назначать из расчета на 1 кг массы тела, на 1 м² поверхности тела или на 1 год жизни ребенка. Существуют *различные подходы к расчету доз* для детей на основе дозы лекарственного препарата для взрослого, например, исходя из массы тела (*ПРАВИЛО КЛАРКА*), исходя из возраста (*ПРАВИЛО ЯнгА*) и другие. Для более *точного* расчёта используют соответствующие процентные отношения (*табл. 1*).

Возраст	Macca,	Рост, см.	Поверхность	Процентное отношение к взрослым				
	кг.		тела, м	% массы	%поверхности			
1	2	3	4	5	6			
Новорождённые	3,5	50	0,25	5	14			
2-3 мес.	5	60	0,28	8	16			
6 мес.	7,5	65	0,35	11	20			
1 год	10	75	0,43	15	25			
3 года	15	97	0,6	23	35			
6 лет	20	115	0,85	30	46			
7 лет	23	123	0,9	35	50			

Таблица 1. Соотношение поверхности тела в зависимости от возраста, роста и массы ребёнка

	Продолжение таблицы 1										
1	2	3	4	5	6						
9 лет	28	135	1,0	42	50						
10 лет	30	140	1,05	46	60						
12 лет	40	142	1,2	62	70						
14 лет	50	150	1,43	77	86						
Взрослые	70	162	1,73	100	100						

Для того, чтобы рассчитать дозировку *разового приёма* лекарства для ребёнка, необходимо знать дозировку этого лекарства на 1 кг веса тела взрослого человека. Например, если вес взрослого человека составляет 70 кг, а принимаемая им доза – 0,15 г., то дозировка на 1 кг его веса составляет 0,15г : 70 кг = 0,0021 г. (если в инструкции к препарату приведена доза для взрослого человека без указания веса, то вес для расчётов следует взять равным 70 кг).

Рассмотрим *два правила* определения дозы препарата для ребёнка: Правило Кларка и Правило Янга и сравним их.

Правило Кларка (исходя из массы тела)

Расчет дозы лекарственных средств детям *исходя из массы тела* осуществляется по следующей формуле (*правило Кларка*):

Пример 1. Рассчитаем дозу для новорожденного по правилу Кларка исходя из массы тела. Масса тела новорожденного 3 кг. Средняя терапевтическая доза лекарственного препарата для взрослого 350 мг.

Таким образом, доза лекарственного препарата для новорождённого ребенка составляет **15** мг.

Правило Янга (исходя из возраста)

Расчет дозы лекарственных средств детям, *исходя из возраста*, основаны на *правиле Янга*:

Доза = доза для взрослого × Возраст ребенка (годы) <u>Возраст ребенка (годы) + 12</u> <u>Пример 2.</u> Проведем расчет дозы для 6-летнего ребенка. Доза для взрослого составляет 350 мг.

Доза = доза взр.× $\frac{B$ озраст ребенка (годы) = 350 × $\frac{6}{6+12}$ = 117 мг

Таким образом, доза лекарственного препарата для 6-летнего ребенка составляет **117** мг.

Моделирование расчётов в приложении MS EXCEL

Составление таблиц и графиков.

Правило Кларка (исходя из массы тела)

Рассчитаем дозы для детей по правилу Кларка, исходя из массы тела по формуле:

Средняя терапевтическая доза лекарственного препарата для взрослого 350 мг, вес взрослого человека – 70 кг, масса тела детей (*табл. 2*).

Таблица 2. Масса тела детей

Масса тела, кг.	3,5	7	10	15	20	25	30	40	50	70	
,	/										I.

- 1. Для ввода массы тела взрослого человека будем использовать ячейку **С2**, для дозы препарата взрослого человека ячейку **С3**.
- 2. Введём в ячейки диапазона C5:L5 значения массы тела детей (табл. 2).
- 3. В ячейки диапазона **C6:L6** введём соответствующие формулы расчёта: в ячейку **C6** формулу =C3*C5/C2, в ячейку **D6** формулу =C3*D5/C2 и т.д.

13	A	8	C	D	Ε	F.	G	н	1	1	K	L	M
1													
2		Масса тела взрослого, кг. =	70										
3		Доза для взрослого, мг. =	350										
4													
5		Масса тела ребёнка, кг.	3,5	7,0	10,0	15,0	20,0	25,0	30,0	40,0	50,0	70,0	
6		Доза для детей, мг.	17,5	35,0	50,0	75,0	100,0	125,0	150,0	200,0	250,0	350,0	
7			2224								10030000		

Рис. 1. Расчёт дозы препарата в зависимости от массы тела ребёнка

4. Визуализируем расчёты, построив график зависимости дозы препарата от *массы тела ребёнка*, используя диаграмму типа *График (puc.2*).

5. При построении графика в качестве *категорий* использовать диапазон ячеек **C5:L5**, а в качестве *значений* – диапазон ячеек **C6:L6** (*puc. 1*).

Рис. 2. График зависимости дозы препарата от массы тела ребёнка

Правило Янга (исходя из возраста)

Рассчитаем дозы для детей по правилу Янга, исходя из возраста по формуле:

Доза = доза для взрослого × Возраст ребенка (годы) Средняя терапевтическая доза лекарственного препарата для взрослого 350

мг, возраст детей (табл. 3).

Таблица 3. Возраст детей

Возраст ребёнка (голы) 1 3 6 7 9 10 12 14	
---	--

- 1. Для ввода дозы препарата взрослого человека будем использовать ячейку **С2**.
- 2. Введём в ячейки диапазона С4: J4 значения возраста детей (табл. 3).
- В ячейки диапазона C5:J5 введём соответствующие формулы расчёта: в ячейку C5 формулу =C2*C4/(C4+12), в ячейку D5 формулу =C2*D4/(D4+12) и т. д.

	А	B	С	D	E	F	G	Н	E.	J
1										
2		Доза для взрослого, мг =	350							
3										
4		Возраст ребёнка, годы	1	3	6	7	9	10	12	14
5		Доза для детей, мг	26,9	70,0	116,7	128,9	150,0	159,1	175,0	188,5

Рис. 3. Расчёт дозы препарата в зависимости от возраста ребёнка

- 4. Визуализируем расчёты, построив график зависимости дозы препарата от *возраста ребёнка*, используя диаграмму типа *График (рис. 4)*.
- 5. При построении графика в качестве *категорий* использовать диапазон ячеек **C4:J4**, а в качестве *значений* диапазон ячеек **C5:J5** (*puc. 3*).

Рис. 4. График зависимости дозы препарата от возраста ребёнка

Сравнительная характеристика 2-х методов расчёта.

1. На основании табл.1 составим выборочную таблицу (табл. 4).

	D C				
Iannua 4	Кыропочные данные	соотношения	BOJDACTA	перенка	его мяссе
1 <i>aostat</i> ja. 7.	Dbioopo mbie dannibie	coornomenna	Dospacia	peoenna	ci o macce

Возраст	Масса, кг.
1 год	10
6 лет	20
10 лет	30
12 лет	40
14 лет	50
Взрослые	70

2. На основании *данных* (*табл. 4*) и *значений*, полученных графическим путём, составим таблицу сравнительных характеристик (*табл. 5*) и сделаем следующие выводы: дозы препарата несколько *отличаются*, но в допустимых значениях. Такие расчёты имеют тенденцию к *преуменьшению* требующейся дозы и считаются *традиционными*.

Правило Кларка,	Правило Янга,	Доза для ребёнка, мг.				
масса тела, кг. возраст, лет	возраст, лет	По Кларку	По Янгу			
20	6	100,0	116,7			
30	10	150,0	159,1			
40	12	200,0	175,0			
50	14	250,0	188,5			

Таблица. 5. Сравнительная характеристика по построенным графикам

ПРАКТИЧЕСКАЯ РАБОТА № 2.2

Тема: Математическое моделирование расчётов из курса лекарственной терапии для детей. Исходя из площади поверхности тела и Дозис-Фактор по Харнаку.

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, офисное приложение MS Excel 2007.

Цель работы: научиться исследовать интерактивные компьютерные модели в приложении MS Excel.

Задание: Рассчитать дозы лекарственного препарата для детей по двум правилам: Исходя из площади тела и Дозис-Фактор по Харнаку.

Словесное описание алгоритма.

В детском возрасте преобладающее значение имеет *определение дозы в* зависимости от массы и поверхности тела. Оба метода взаимно дополняются в зависимости от вида лекарства. Они позволяют легко вычислить необходимую дозу в зависимости от массы, а для определения площади поверхности тела существуют номограммы или таблицы (табл. 1).

22

Возраст	Macca,	Рост, см.	Поверхность	Процентное отношение к взрослым			
	кг.		тела, м²	% массы	%поверхности		
Новорождённые	3,5	50	0,25	5	14		
2-3 мес.	5	60	0,28	8	16		
6 мес.	7,5	65	0,35	11	20		
1 год	10	75	0,43	15	25		
3 года	15	97	0,6	23	35		
6 лет	20	115	0,85	30	46		
7 лет	23	123	0,9	35	50		
9 лет	28	135	1,0	42	50		
10 лет	30	140	1,05	46	60		
12 лет	40	142	1,2	62	70		
14 лет	50	150	1,43	77	86		
Взрослые	70	162	1,73	100	100		

Таблица 1. Соотношение поверхности тела в зависимости от возраста, роста и массы ребёнка

Исходя из площади поверхности тела

У детей с избыточной или недостаточной массой тела может отмечаться передозировка или малая дозировка при расчете на массу тела. В этом случае лучше пользоваться расчетом на площадь поверхности тела. Существуют специальные номограммы, позволяющие переходить при расчете от величины массы тела больного к площади поверхности тела (табл. 2 и табл. 3). Следует учесть, что более адекватным для выбора дозы лекарственного вещества детям разных возрастов являются расчеты, учитывающие площадь поверхности тела.

Таблица 2. Номограммы, позволяющие переходить от величины массы тела человека к площади поверхности тела

Масса тела, кг.	3,5	7	10	15	20	25	30	40	50	70
Площадь										
поверхности тела, м ²	0,22	0,35	0,45	0,65	0,80	0,95	1,05	1,25	1,5	1,72

Масса тела, кг.	Приблизительный возраст	Площадь поверхности тела, м ²	Процент от дозы взрослого, %		
3	Новорожденный	0,2	12		
6	3 месяца	0,3	18		
10	1 год	0,45	28		
20	5,5 года	0,8	48		
30	9 лет	1	60		
40	12 лет	1,3	78		
50	14 лет	1,5	90		
60	Взрослый	1,7	102		
70	Взрослый	1,76	103		

Таблица 3. Определение дозы лекарственного средства по площади поверхности тела

Пример Расчет дозы для новорожденного ребенка. Доза лекарственного вещества составляет 5 мг/кг для взрослого больного. Доза для взрослого пациента составит – 70 кг х 5 мг/кг = 350 мг. Проведем перерасчет дозы на массу тела новорожденного, равную 3 кг. с учётом площади поверхности. Поправочный коэффициент равен 0,12 (12%).

Доза = расчетная доза × коэффициент = $117 \times 0.12 = 14.04 \approx 14 \frac{M\Gamma}{K\Gamma}$. Доза данного препарата для новорожденного составляет: 14 мг/кг.

Дозис-фактор по Харнаку (табл. 4).

Возраст, лет	"Дозис-фактор"
0-1	1,8
1-6	1,6
7-10	1,4
11-12	1,2
Старше 14 лет (Взрослый)	1,0

Таблица 4. Показатель "Дозис-фактора" для различных возрастных категорий

Пример Доза препарата для взрослого человека (масса 70 кг) равна 500 мг. Рассчитаем дозу для 8-летнего ребенка массой тела 26 кг. Доза для взрослого равна 500 мг / 70 = 7,14 мг/кг. Масса тела ребенка равна 26 кг. Доза лекарственного препарата для ребенка равна 7,14 х 26 х 1,4 = **260** мг.

Моделирование расчётов в приложении MS EXCEL

Составление таблиц и графиков.

Исходя из площади поверхности тела

Доза лекарственного вещества составляет 5 мг/кг для взрослого при весе в 70 кг. Рассчитаем дозу для детей *с учётом площади поверхности тела и поправочного коэффициента* по формуле: **DD** = **VD** / **m** * **K**, где **DD** – детская доза (мг/кг.); **VD** – расчётная взрослая доза (мг/кг.), **m** – масса тела ребёнка (кг.), **K** – поправочный коэффициент. Составим таблицу массы тела детей с учётом поправочного коэффициента (*табл. 5*) и войдём в приложение MS Excel (*рис. 1*).

Таблица 5. Масса тела детей и поправочный коэффициент

Масса тела, кг.	3	6	10	20	30	40	50	70
Коэффициент (% от взрослого)	0,12	0,18	0,28	0,48	0,60	0,78	0,90	1,00

- 1.Для ввода дозы лекарственного вещества (мг/кг) взрослого будем использовать ячейку **С2**, для веса взрослого человека (кг.) ячейку **С3**.
- 2. Из *табл.* 5 в ячейки диапазона **C5:J5** введём значения массы детей в кг., в ячейки диапазона **C6:J6** введём значения коэффициентов в %.
- 3.В ячейки диапазона С7:J7 введём соответствующие формулы расчёта:
 в ячейку С7 формулу =C2*C3/C5*C6, в ячейку D7 формулу =C2*C3/D5*D6 и т. д.

Z	Α	В	С	D	E	F	G	Н	1	J	K
1											
2		Доза препарата, мг/кг =	5								
3		Вес взрослого человека, кг. =	70								
4				1							
5		Масса ребёнка, кг.	3	6	10	20	30	40	50	70	
6		Коэффициент, % от взрослого	0,12	0,18	0,28	0,48	0,60	0,78	0,90	1,00	
7		Доза для ребёнка, мг/кг.	14,00	10,50	9,80	8,40	7,00	6,83	6,30	5	
8											

Рис. 1. Расчёт дозы препарата в зависимости от массы тела и коэффициента

- 4. Визуализируем расчёты, построив график зависимости дозы препарата от площади поверхности тела, используя диаграмму типа *График* (*puc.* 2).
- 5. При построении графика в качестве *категорий* используем диапазон ячеек **C5:J5**, а в качестве *значений* диапазон ячеек **C7:J7** (*puc. 1*).

Рис. 2. График зависимости дозы препарата от массы тела и коэффициента

Дозис-Фактор по Харнаку

Средняя терапевтическая доза лекарственного препарата для взрослого 350 мг, вес взрослого человека – 70 кг. Рассчитаем дозу для детей с применением *Дозис-Фактора Харнака* по формуле: **DD** = **VD** / **70** * **m** * **DF**, где **DD** – детская доза (мг.); **VD** – взрослая доза (мг.); **m** – масса тела ребенка (кг.); **DF** – Дозис-Фактор. На основании данных (*табл. 4*) составим таблицу массы тела детей с учётом Дозис-фактора (*табл. 6*) и войдём в приложение MS Excel (*puc. 3*).

Таблица 6. Масса тела и Дозис-фактор детей

Масса тела ребёнка, кг.	3	6	10	20	30	40	50	70
Дозис-фактор	1,8	1,8	1,8	1,6	1,4	1,2	1,2	1,0

1. Для ввода дозы препарата взрослого человека (мг.) будем использовать ячейку **С2**, для ввода массы тела взрослого человека (кг.) – ячейку **С3**.

- 2. Из *табл.* 6 в ячейки диапазона **C5:J5** введём значения массы тела детей (кг.), в ячейки диапазона **C6:J6** – значения Дозис-Фактора.
- В ячейки диапазона С7:J7 введём соответствующие формулы расчёта: в ячейку С7 формулу =C2/C3*C5*C6, в ячейку D7 формулу = C2/C3*D5*D6 и т. д.

1	A	В	С	D	E	F	G	Н	T	J	K
1											
2		Доза препарата для взрослого, мг. =	350								
3		Масса взрослого, кг =	70								
4											
5		Масса тела ребёнка, кг.	3	6	10	20	30	40	50	70	
6		Дозис-фактор по Харнаку	1,8	1,8	1,8	1,6	1,4	1,2	1,2	1,0	
7		Доза препарата для ребёнка, мг.	27,00	54,00	90,00	160,00	210,00	240,00	300,00	350,00	
8											

Рис. 3. Расчёт дозы препарата с использованием Дозис-фактора

- 4. Визуализируем расчёты, построив график зависимости дозы препарата от площади поверхности тела, используя диаграмму типа *График* (*puc. 4*).
- 5. При построении графика в качестве категорий использовать диапазон ячеек

С5 : J5, а в качестве значений – диапазоны ячеек **С7 : J7** (*рис. 3*).

Рис. 4. График зависимости дозы препарата от Дозис-фактора

Визуальная сравнительная характеристика

различных методов дозирования

Сравним данные двух вариантов расчёта, полученные графическим путём.

Исходя из площади поверхности тела: Расчёт проведён по формуле: DD = VD / m * K, где DD – детская доза; VD – расчётная доза взрослого, m – масса тела ребёнка, K – поправочный коэффициент. Результат получаем в мг/кг.

Дозис-фактор по Харнаку: Расчёт проведён по формуле: DD = VD / 70 * m * DF, где DD – детская доза; VD – взрослая доза; m – масса тела ребенка, кг; DF – Дозис-фактор. Результат получаем в мг. По полученным данным составим таблицу соответствия доз препаратов (*табл.* 7).

	Доза лекарственного препарата					
Масса тела ребёнка, кг.	Исходя из площади поверхности тела, мг.	Дозис-фактор по Харнаку, мг.				
3	$14 \ge 3 = 42$	27				
6	$10,50 \ge 63$	54				
10	9,80 x 10 = 98	90				
20	8,40 x 20 = 168	160				
30	$7,00 \ge 30 = 270$	210				
40	6,83 x 40 = 273, 2	240				
50	6,30 x 50 = 315	300				
70	5 x 70 = 350	350				

Таблица 7. Соответствие доз препаратов

В результате визуального сравнения различных методов было доказано, что, как было сказано выше, оба метода взаимно дополняются и *максимально* учитывают особенности организма *каждого* ребёнка. Дозы лекарственных препаратов разнятся в *допустимых* значениях и в итоге выходят на начальные дозы взрослого (**350 мг.**). По правилу "Исходя из площади поверхности тела" расчёты *более точные*, но для детей с *избыточной* или *недостаточной* массой тела целесообразно определять *индивидуальную* дозу на основе "ДОЗИС-ФАКТОРА".

Практические задания для самостоятельного выполнения

1. Масса тела детей в возрасте 12 лет *по данным Всемирной Организации Здравоохранения* представлена в *табл.* 8. Нормальный вес (31 – 52) кг. Средняя терапевтическая доза лекарственного препарата для взрослого 350 мг, вес взрослого человека – 70 кг.

Таблица 8. Вес детей в возрасте 12 лет

	Масса тела, кг.	25	28	31	37	43	50	52	60	65	70
--	-----------------	----	----	----	----	----	----	----	----	----	----

По правилу КЛАРКА, исходя из массы тела по формуле:

определите *дозу препарата для каждого ребёнка*, построив таблицу в приложении Excel. Визуализируйте полученные расчёты, построив график зависимости дозы препарата от *массы тела ребёнка*.

2. Отберите из таблицы показатели с недостаточной и избыточной массой.

3. Повторно выполните расчёты на основе "ДОЗИС-ФАКТОРА".

4. Проведите сравнительную характеристику 2-х вариантов расчёта.

Глава 3. Построение и исследование информационных моделей на

языке объектно-ориентированного программирования Visual Basic Практическая работа № 3.1

Тема: Экспертные системы на примере решения задач из курса генетики. От чего зависит цвет глаз и как его рассчитать?

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, система визуального программирования Visual Basic 6.0.

Цель работы: научиться разрабатывать и исследовать экспертные системы.

Задание: Разработать экспертную систему "Определение цвета глаз человека". Формальная модель экспертной системы.

Цвет окружающей зрачок радужки, зависящей от пигмента меланина и характера отражения света, бывает различным: голубой (пигмента мало), серый и карий (пигмента много). Когда красящего вещества совсем нет, радужка выглядит красной (глаза альбиносов). Цветовая гамма, хотя и строго у каждого индивидуальная, свидетельствует о наследуемости признака.

Голубой цвет глаз чаще встречается в северных регионах, коричневый – в местах с умеренным климатом, а черный в районах экватора. Но есть и исключения из правил: у эскимосов, ненцев и чукчей глаза темные, как волосы и оттенок кожи. Так безболезненнее воспринимается отражение колоссальной блестящей ледяной поверхности.

Как генетически передается цвет глаз? Последние исследования в сфере генетики обнаружили новые данные о генах, которые отвечают за цвет глаз.

У каждого человека есть минимум 2 гена, определяющих цвет глаз: ген HERC2, который расположен в 15 хромосоме человека (*табл. 1*), и ген gey (он же называется EYCL 1), который расположен в 19 хромосоме (*табл. 1*).

<u>ген HERC2: 2 копии*</u>	<u>Цвет глаз человека</u>	<u>ген деу: 2 копии*</u>	<u>Цвет глаз человека</u>
Карий и Карий	карий	Зелёный и Зелёный	зелёный
Карий и голубой	карий	Зелёный и голубой	зелёный
Голубой и голубой	голубой или зеленый	голубой и голубой	голубой

Таблица 1. Гены, определяющие цвет глаз человека

Алгоритм экспертной системы представим в виде блок-схемы (*puc. 1*). Для идентификации цвета глаз проверим справедливость заданных условий. Например, если ген матери HERC2 – *карий*, а тот же ген отца – *голубой*, то у ребенка глаза все равно *карие*.

Рис. 1. Блок-схема экспертной системы по определению цвета глаз человека

Компьютерная модель экспертной системы.

Реализуем экспертную систему с использованием языка Visual Basic. Функционирование такой экспертной системы реализуем в диалоге "система пользователь". Экспертная система задает пользователю серию вопросов, анализирует ответы и сравнивает с имеющимися фактами. При этом производится логический вывод и формируется ответ.

Для этого необходимо создать:

- Графический интерфейс проекта, поместив на форму командную кнопку CommandButton и управляющий элемент ListBox1 (список); результаты распознавания будем помещать в ListBox1, который удобен для вывода элементов списка с помощью метода List1.AddItem().
- Обработчик события, который реализует диалог с пользователем путем вызова общих процедур и осуществляет вывод соответствующих сообщений.

•Обработчик события

Dim A As Byte

Private Sub Command1_Click()

'число 36 обеспечивает вывод окна типа "вопрос",

'которое имеет две кнопки Да и Нет

А = MsgBox("Ген матери HERC2 карий?", 36, "Первый вопрос")

Число 6 означает, что нажата кнопка Да

If A = 6 Then Отец_Карие Else Мать_голубые

End Sub

•Общая процедура Отец_карие

Sub Отец_Карие()

А = MsgBox("Ген отца HERC2 карий?", 36, "Второй вопрос")

If A = 6 Then List1.AddItem ("1. У ребенка глаза-карие") Else Отец_голубые

End Sub

Общая процедура Мать_голубые

Sub Мать_голубые()

А = MsgBox("Ген матери HERC2 голубой?", 36, "Второй вопрос")

If A = 6 Then Отец_голубые1

End Sub

Общая процедура Отец_голубые

Sub Отец_голубые()

А = MsgBox("Ген отца HERC2 голубой?", 36, "Третий вопрос")

If A = 6 Then List1.AddItem ("2. У ребенка глаза-карие")

End Sub

Общая процедура Отец_голубые1

Sub Отец_голубые1()

```
А = MsgBox("Ген отца HERC2 голубой?", 36, "Третий вопрос")
```

If A = 6 Then List1.AddItem ("3. У ребенка глаза-голубые или зеленые")

End Sub

Компьютерный эксперимент.

Работа с экспертной системой позволит более эффективно проанализировать рассматриваемый процесс. Запустить экспертную систему с использованием блок-схемы (*puc. 1*) и получить необходимые варианты ответов (*puc. 2, puc. 3*) в диалоговом окне нажатием на кнопки Да или Нет.

Р Определение цвета глаз человека по двум колиям гена HERC2

 Определение цвета глаз человека по двум копиям гена HERC2 1. У ребенка глаза-карие 2. У ребенка глаза-карие 3. У ребенка глаза-карие 3. У ребенка глаза-карие 	Гретий вопрос
Цеет глаз	<u>Aa</u> Her

Рис. 3. Последний шаг выполнения проекта

Практическая работа № 3.2

Тема: Экспертные системы на примере решения задач из курса иридодиагностики. Как поставить диагноз пациенту?

Аппаратное и программное обеспечение: Компьютер с программным обеспечением - OS Windows 7, система визуального программирования Visual Basic 6.0.

Цель работы: научиться разрабатывать и исследовать экспертные системы.

Задание: Разработать экспертную систему "Как поставить диагноз пациенту?".

Формальная модель экспертной системы.

Иридодиагностика – это наука о распознавании патологических изменений в организме по радужке глаза. *Радужная оболочка* находится на переднем отделе глаза. В центре радужной оболочки находится зрачок. Цвет радужки определяется содержанием меланина в специальных клетках, чем больше меланина, тем темнее цвет радужки.

Принцип иридодиагностики заключается в том, что каждый участок радужной оболочки связан с различными внутренними органами человека. Разработаны специальные карты, таблицы, на которых есть схемы проекционных зон тела человека на радужке (табл. 1, табл. 2).

34

При патологии какого-то органа на радужке наступают определенные изменения. Многие врачи считают, что с помощью иридодиагностики можно выявить генетическую предрасположенность человека к разным заболеваниям, и установить, каких заболеваний нужно опасаться в будущем и как их можно предотвратить.

Например, ярко выраженные участки радужки желтого, оранжевого или коричневого цвета соответствуют признакам *интоксикации*, т. е. свидетельствует об отравлении организма различными экзогенными (внешними) и эндогенными (внутренними) токсинами.

Иридодиагностика популярно благодаря тому, что процедура диагностики полностью безвредна и безболезненна, она не имеет противопоказаний, как некоторые другие методики. С помощью иридодиагностики врач может оценить состояние организма в целом и определить заболевание уже на ранней стадии. Иридодиагност не только диагностирует заболевание, но и выявляет причины его возникновения и даёт рекомендации для выздоровления.

Изменения в этих зонах – структурные и цветовые свидетельствуют о наличие заболевания.

Проекционные зоны органов в цилиарном поясе глаза					
Органы	Правая радужка	Левая радужка			
Почки	17.30 - 6.30	6.30 - 17.30			
Надпочечники	17.30 - 6.30	Узкий полусектор у автономного кольца			
Матка (Предстательная железа)	17.00	7.00			
Придатки (Яичники)	7.00	17.00			
Желчный пузырь	7.30 - 8.10	от автономного кольца до 1/4 цилиарного пояса			
Печень	7.30 - 8.10; 16.00 - 16.15	7.30 - 8.00			
Молочные железы	8.40 - 9.00	15.00 - 15.20			
Сердце	8.50 - 9.50	17.00 - 15.20			
Бронхи	Горизонтальная линия 9.00	15.00			
Легкие	9.00 - 9.50	14.10 - 15.00			
Уши	10.30 - 10.45	13.30 - 13.45			
Гипоталамо-гипофизарная система	от 11.00 до 13.00 1/-	1/4 цилиарного пояса			
Головной мозг	от 11.00	до 13.00			
Нос, гайморовые пазухи	13.30 -13.45	10.30 - 10.45			
Миндалины, глотка	14.00 - 14.20	9.40 - 10.00			
Щитовидка	14.20 - 14.40	9.20 - 9.40			
Селезенка	-	16.10 - 16.30			
Пищевод	15.00	9.00			
Проекционные	зоны органов в зрачковом	поясе глаза			
Поджелудочная железа	от 16.30 до 7.30 участи	а автономного кольца			
12-типерстная кишка	17.30 - 7.30	17.00 - 7.00			
Тонкий кишечник	13.30 - 17.00	7.00 - 10.30			
Толстый кишечник	7.30 - 13.30	10.30 - 13.30			
Желудок	Внугренняя половии	на зрачкового пояса			
Позвоночник шейный отдел	10.00 -	14.00			
Грудной отдел	7.30 - 10.00;	14.00 - 16.30			
Поясничный отдел	6.10 - 7.30; 1	6.30 - 17.50			

Таблица 2. Проекционные зоны органов

Алгоритм экспертной системы представим в виде блок-схемы (рис. 1).

Рис. 1. Укрупненная блок-схема экспертной системы по иридодиагностике

Компьютерная модель экспертной системы.

Реализуем экспертную систему определения диагноза человека методами иридодиагностики с использованием языка Visual Basic. Функционирование такой экспертной системы реализуем в диалоге "система – пользователь". Экспертная система задает пользователю серию вопросов, анализирует ответы и сравнивает с имеющимися фактами. При этом производится логический вывод и формируется ответ на интересующий пользователя вопрос, то есть определение диагноза.

Для этого необходимо создать:

- Графический интерфейс проекта, поместив на форму командную кнопку CommandButton и управляющий элемент ListBox1 (список); результаты распознавания будем помещать в ListBox1, который удобен для вывода элементов списка с помощью метода List1.AddItem().
- 2. Обработчик события, который реализует диалог с пользователем путем вызова общих процедур и осуществляет вывод соответствующих сообщений.

•Обработчик события

Dim A As Byte

Private Sub Command1_Click()

число 36 обеспечивает вывод окна типа "вопрос,"

'которое имеет две кнопки Да и Нет

A = MsgBox("Изменения в виде пятен?", 36, "Первый вопрос")

Число 6 означает, что нажата кнопка Да

If A = 6 Then Токсические Else Линии

End Sub

Общая процедура Токсические

Sub Токсические()

A = MsgBox("Пятна желтые, оранжевые, коричневые?", 36, "Второй вопрос") If A = 6 Then List1.AddItem ("1. Признаки интоксикации") Else Пигментные End Sub

•Общая процедура Пигментные

Sub Пигментные()

А = MsgBox("Пятна различного цвета и формы?", 36, "Третий вопрос")

If A = 6 Then List1.AddItem ("2. Заболевания с выраженным болевым

синдромом") Else Вата

End Sub

•Общая процедура Вата

Sub Bata()

```
A = MsgBox("Белые или желтые пятнышки, напоминающие комочки ваты?",
```

36, "Четвертый вопрос")

If A = 6 Then List1.AddItem ("3. Нарушение обмена веществ")

End Sub

•Общая процедура Линии

Sub Линии()

А = MsgBox("Изменения в виде линий?", 36, "Второй вопрос")

If A = 6 Then Лучистость Else Налет

End Sub

•Общая процедура Лучистость

Sub Лучистость()

```
A = MsgBox("Вытянутые от центра к периферии участки радужки темного
```

цвета?", 36, "Третий вопрос")

If A = 6 Then List1.AddItem ("4. Хронический колит, церебральный

атеросклероз, остеохондроз с вартебральным блоком и т. д.") _

Else Разволокнение

End Sub

Общая процедура Разволокнние

Sub Разволокнение()

A = MsgBox("Разволокнение и потемнение в зоне почек, под зрачком?", 36,

"Четвертый вопрос")

If A = 6 Then List1.AddItem ("5. Пиелонефрит") Else Борозды

End Sub

Общая процедура Борозды

Sub Борозды()

A = MsgBox("В верхней части над зрачком - борозды и изменение цвета?", 36, "Пятый вопрос")

If A = 6 Then List1.AddItem ("6. Шейный остеохондроз") Else Налет

End Sub

•Общая процедура Налет

Sub Налет()

А = MsgBox("Беловатый налет на радужке?", 36, "Шестой вопрос")

If A = 6 Then List1.AddItem ("7. Ревматизм, патология суставов, частые простудные заболевания, кожная патология") _

Else List1.AddItem ("8. Все предложенные варианты рассмотрены")

End Sub

***Примечание:** чтобы длинную строку записать в две строки надо использовать в конце первой строки пробел и подчёркивание "_".

Компьютерный эксперимент.

Работа с экспертной системой позволит более эффективно проанализировать рассматриваемый процесс. Запустить экспертную систему с использованием блок-схемы (*puc.1*) и получить необходимые варианты ответов (*puc.2, puc.3*), т. е. последовательно проверяем заданные условия в диалоговом окне нажатием на кнопки Да или Нет.

В. По изменениям радужки глаза поставить диагноз	
	Изменения в виде пятен?
Диагноз	Да Нет

Рис. 2. Первый шаг выполнения проекта

🖪, По и	зменениям радужки глаза поставить диагноз	
	 Признаки интоксикации Заболевания с выраженным болевым синдромом Нарушение обмена веществ Хронический колит, церебральный атеросклероз, остеохондроз с вар Пиелонефрит Шейный остеохондроз 	отебральным Шестой вопрос Беловатый налет на радужке?
	Диагноз	Да Нет

Рис. 3. Последний шаг выполнения проекта

Практические задания для самостоятельного выполнения

- 1. Доработайте блок-схему по иридодиагностике, включив в неё дополнительно изменения на радужке глаз в виде красных пятен, которые свидетельствуют о геморрагических состояниях и изменениях в формуле крови.
- 2. Напишите соответствующую процедуру и включите её в программный код.
- 3. Проведите компьютерный эксперимент.

Глава 4. Разработка проекта на языке delphi: "программа компьютерного тестирования"

Практическая работа 4.1

Тема: Разработка программы компьютерного тестирования.

Аппаратное и программное обеспечение: Компьютер с программным обеспечением – OS Windows 7, система визуального программирования Delphi.

Цель работы: научиться работать в среде визуального программирования Delphi: уметь проектировать на форму объекты с заданными свойствами Button, Label, RadioButton, составлять программные коды с использованием переменных типа boolean, функции преобразования данных (StrToInt()), процедуры вывода (ShowMessage()) и вводить исходные данные из текстового файла.

Задание: Разработать программу компьютерного тестирования по оцениванию полученных знаний из курса иридодиагностики.

Формальная модель проекта.

Создать текстовый файл в Блокноте, который представляет собой последовательность вопросов из курса иридодиагностики. Испытуемый должен ответить на предложенные вопросы путем выбора правильного ответа из нескольких предложенных вариантов. Файл теста состоит из 3-х разделов: раздел заголовка, раздел оценок, раздел вопросов.

Пример текстового файла:

ИРИДОДИАГНОСТИКА Вы правильно ответили на все вопросы. Оценка - ОТЛИЧНО! 6 На некоторые вопросы вы ответили неверно. Оценка - ХОРОШО. 5 По количеству правильных ответов оценка - УДОВЛЕТВОРИТЕЛЬНО. 4 Вы плохо подготовились к испытанию. Оценка - ПЛОХО! 3 При интоксикации изменения на радужке глаза в виде жёлтых пятен 1 белых или жёлтых пятен (комочки ваты)

0 красных пятен 0 При заболевании с болевым синдромом изменения на радужке глаза в виде белых или жёлтых пятен (комочки ваты) 0 жёлтых пятен 0 пятен различного цвета и формы 1 При нарушении обмена веществ изменения на радужке глаза в виде красных пятен 0 белых или жёлтых пятен (комочки ваты) 1 пятен различного цвета и формы 0 При изменениях в формуле крови изменения на радужке глаза в виде красные 1 пятен различного цвета и формы 0 белых или жёлтых пятен (комочки ваты) 0 При патологии суставов изменения на радужке глаза в виде вытянутых линий тёмного цвета 0 над зрачком борозды 0 беловатого налёта 1 При остеохондрозе изменения на радужке глаза в виде беловатого налёта 0 вытянутых линий тёмного цвета 1 над зрачком борозды 0

Сохранить текстовый файл с именем INFORM в отдельную папку.

Компьютерная модель.

1. Создать графический интерфейс проекта

Поместить на форму (вкладка Standart):

- командную кнопку Button1 (ОК) для подтверждения выбора альтернативного ответа и перехода к следующему вопросу;
- надпись Label1 (буква А) для вывода текста вопроса, начальной информации о тесте и результатов тестирования;
- три надписи Label2, Label3, Label4 для вывода текста альтернативных ответов;
- три переключателя RadioButton1, RadioButton2, RadioButton3 (круг) для выбора варианта ответа.

В диалоговом окне **Инспектор объектов** форме Form1 свойству *Caption* дать значение - *Проверка знаний*; командной кнопке Button1 свойству *Caption* дать значение – *Дальше*.

Чтобы задать значения шрифта, необходимо выделить объект, дважды щёлкнуть по сложному свойству *Font* со знаком "плюс", потом щёлкнуть на командную кнопку с *тремя точками*. В появившемся диалогом окне для Label1: шрифт – MS Sans Serif, начертание – полужирный, размер – 12 (*puc. 1*); для Label2 – Label4: начертание – обычный, размер – 12; для Button1: шрифт – MS Sans Serif, начертание – обычный, размер – 12; для всех меток свойству AutoSize дать значение False, свойствам ParentFont и WordWrap – True.

Рис. 1. Для метки Label1 выбрать шрифт и задать его параметры

Окончательный вид формы разрабатываемого проекта представлен на рис. 2

Рис. 2. Форма разрабатываемого проекта

2. Создать событийные процедуры

После создания формы в окно редактора кода следует поместить описание глобальных переменных программы и процедур общего назначения. Для использования дополнительных свойств командной кнопки Button1 в раздел интерфейса (interface) после слова uses в перечень библиотечных модулей добавить модуль *StdCtrls*. Затем можно приступить к созданию программного кода с описанием процедур обработки событий:

procedure FormCreate(Sender: TObject);

procedure Button1Click(Sender: TObject);

procedure RadioButton1Click(Sender: TObject);

procedure RadioButton2Click(Sender: TObject);

procedure RadioButton3Click(Sender: TObject);

Программный код проекта

unit TEST01;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)
Button1: TButton;

Label1: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

RadioButton1: TRadioButton;

RadioButton2: TRadioButton;

RadioButton3: TRadioButton;

procedure FormCreate(Sender: TObject);

procedure Button1Click(Sender: TObject);

procedure RadioButton1Click(Sender: TObject);

procedure RadioButton2Click(Sender: TObject);

procedure RadioButton3Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

{\$R *.dfm}

var

f: TextFile;	// файл теста (вопросы и варианты ответов)
title: string;	// название теста
nq: integer;	// количество вопросов в тесте

right: integer; // количество правильных ответов // количество правильных ответов, необходимых для достижения уровня level: array[1..4] of integer; // сообщение об оценке mes: array[1..4] of string; buf: string; // читает из файла вопрос, варианты ответа и выводит их в поля формы function NextQw : boolean; begin if not EOF(f) then begin // счетчик общего количества вопросов nq:=nq+1;Form1.Caption := Title + ' - BOILDOC ' + IntToStr(nq); // прочитать и вывести вопрос Readln(f,buf); Form1.Label1.Caption := buf; // прочитать и вывести варианты ответов // 1-й вариант Readln(f,buf); // прочитать 1-й вариант ответа Form1.Label2.Caption := buf; Readln(f,buf); // оценка за выбор этого ответа (1 - правильно, 0 - нет) Form1.RadioButton1.Tag := StrToInt(buf); // 2-й вариант Readln(f,buf); Form1.Label3.Caption := buf; Readln(f,buf); Form1.RadioButton2.Tag := StrToInt(buf); // З-й вариант Readln(f,buf);

Form1.Label4.Caption := buf;

Readln(f,buf);

```
Form1.RadioButton3.Tag := StrToInt(buf);
```

// кнопка "Дальше" не доступна, пока не выбран один из вариантов ответа

Form1.Button1.Enabled := False;

// ни один из переключателей не выбран

```
Form1.RadioButton1.Checked := False; Form1.RadioButton2.Checked := False;
```

```
Form1.RadioButton3.Checked := False; NextQw := TRUE;
```

end

else NextQw := FALSE;

end;

```
// событие FormCreate возникает в момент создания формы
```

procedure TForm1.FormCreate(Sender: TObject);

var

i: integer;

fname: string;

begin

```
// При запуске программного кода из Delphi имя файла inform.txt надо
```

// ввести в поле диалогового окна, которое доступно при выборе в меню

```
// Run (Выполнить) пункта команды Parameters (Параметры) <OK>
```

```
fname := ParamStr(1); // взять имя файла теста из командной строки
```

if fname = ' ' then

begin

```
ShowMessage('В командной строке запуска программы' +#13+
```

```
'надо указать файл теста.');
```

Application.Terminate; // завершить программу end;

AssignFile(f,fname);

// в процессе открытия файла возможны ошибки

```
try
```

```
Reset(f);
```

```
// эта инструкция может вызвать ошибку
```

except

on EInOutError do

begin

```
ShowMessage('Ошибка обращения к файлу теста: ' + fname);
```

```
Application.Terminate; // завершить программу
```

end;

end;

```
// файл теста успешно открыт
```

```
// прочитать название теста - первая строка файла
```

Readln(f,buf);

title := buf;

```
// прочитать оценки и комментарии
```

```
for i:=1 to 4 do
```

begin

```
Readln(f,buf);
```

mes[i] := buf;

```
Readln(f,buf);
```

```
level[i] := StrToInt(buf);
```

end;

right := 0;	// правильных ответов
nq := 0;	// всего вопросов
NextQW;	// прочитать и вывести первый вопрос
nq := 0; NextQW;	// всего вопросов// прочитать и вывести первый воп

end;

// щелчок на кнопке "Дальше"

procedure TForm1.Button1Click(Sender: TObject);

var

buf: string;

i: integer;

begin

if Button1.Caption = 'Завершить' then Close;

// добавим оценку за выбранный вариант ответа

// оценка находится в свойстве Button. Tag

// Button.Tag = 1 - ответ правильный, 0 - нет

if RadioButton1.Checked then right := right + RadioButton1.Tag;

if RadioButton2.Checked then right := right + RadioButton2.Tag;

if RadioButton3.Checked then right := right + RadioButton3.Tag;

// вывести следующий вопрос

// NextQW читает и выводит вопрос

// NextQw = FALSE, если в файле теста вопросов больше нет

if not NextQW then

begin

// здесь значение NextQw = FALSE

Button1.Caption := 'Завершить';

// скрыть переключатели и поля меток

RadioButton1.Visible := False; RadioButton2.Visible := False;

RadioButton3.Visible := False; Label2.Visible := False;

Label3.Visible := False; Label4.Visible := False;

buf := 'Тестирование завершено.' + #13 +

'Правильных ответов: ' + IntToStr(right) +

' из ' + IntToStr(nq) + '.' + #13;

// выставить оценку

// right - кол-во правильных ответов

і:=1; // номер уровня

```
while (right < level[i]) and (i < 4) do
     inc(i);
   buf := buf + mes[i];
   Label1.AutoSize := TRUE;
   Label1.Caption := buf;
  end;
end;
// щелчок на переключателе выбора первого варианта ответа
procedure TForm1.RadioButton1Click(Sender: TObject);
begin
                                   // кнопка Далее теперь доступна
 Button1.Enabled := True;
end;
procedure TForm1.RadioButton2Click(Sender: TObject);
begin
 Button1.Enabled := True;
end;
procedure TForm1.RadioButton3Click(Sender: TObject);
begin
 Button1.Enabled := True;
end:
end.
```

Сохранить проект в отдельную папку вместе с текстовым файлом INFORM. Для сохранения проекта из меню Файл (File) выбрать команду Сохранить проект как... (Save Project As...). При первом сохранении откроется диалоговое окно Сохранить модуль (Save Unit1 As). В поле Имя файла ввести значение TEST01 и щёлкнуть по кнопке Сохранить. После сохранения файла модуля проекта открывается диалоговое окно Сохранить проект (Save Project As). В поле Имя файла следует ввести имя проекта TEST.

Компьютерный эксперимент.

После запуска Delphi из меню **Файл** (File) выбрать команду **Открыть**. В открывшемся окне выбрать путь к папке с проектом, в которой находится выполняемый и текстовый файлы. Щёлкните по имени файла TEST и кнопке **Открыть**. На экране высветится форма с управляющими элементами и программный код.

При запуске программного кода из Delphi имя файла inform.txt надо ввести в поле диалогового окна, которое доступно при выборе в меню Run (Выполнить) пункта команды Parameters (Параметры) <OK> (*puc. 3*).

Для выполнения проекта необходимо выбрать команду Выполнить (Run) в меню Выполнить (Run).

Параметры Выполн	ения			×
Локально Удалени	но			
Приложение —				
			<u> </u>	U630p
Аргументы				
inform.txt				•
	Загрузить	OK	Отмена	Помощь

Рис. 3. Ввод имени текстового файла

Файл открывается с помощью инструкции открытия файла для чтения. После успешного открытия файла вызывается процедура, которая считывает информацию из файла и выводит её присваиванием прочитанного текста свойству Caption поля метки Label1. Затем вызывается процедура, которая считывает из файла теста информацию об уровнях оценки. Эта процедура заполняет соответствующие массивы (*puc. 4*).

Рис. 4. Первый шаг выполнения проекта

Для обработки события переключателей в программе используется общая процедура, получающая объект, на котором произошло событие. Сравнивая полученное значение с именами объектов-переключателей, процедура присваивает значение глобальной переменной для увеличения набранной суммы баллов. Кроме того эта процедура делает доступной кнопку Button1 (*puc. 5*).

Рис. 5. Открытие командной кнопки

Сравнивая набранную сумму баллов со значением элементов массива, определяется, какого уровня достиг испытуемый, и выводится соответствующее сообщение (*puc. 6*).

Рис. 6. Последний шаг выполнения проекта

Практические задания для самостоятельного выполнения

- 1. Подготовьте текстовый файл к Практической работе № 4.1 для проверки знаний по *общей биологии* или *фармакологии*.
- 2. Проведите компьютерный эксперимент.

***Примечание:** Количество вопросов и ответов не ограничено. В зависимости от количества вопросов определите критерии получения оценок.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ И ИНТЕРНЕТ – РЕСУРСОВ

- Анатомия глаза [Электронный ресурс]. Режим доступа: http://zrenue.com/anatomija-glaza/30-stroenie-organa-zrenija/1-anatomijaglaza.html.
- 2. Бородин П.М., Общая биология, Учебник для 10-11 классов, Москва, 2006.
- Ванюшина И., Реферативно-экспериментальная работа на тему: "Математическое моделирование дозирования лекарственных средств в педиатрической практике" (Научный руководитель – Наумова А.И.) [Электронный ресурс]. – Режим доступа: https://www.rae.ru.
- 4. Группа крови [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Группа_крови.
- 5. Группы крови. Система резус [Электронный ресурс]. Режим доступа: http://www.medicinform.net/human/fisiology4_4.htm.
- 6. Иридодиагностика [Электронный ресурс]. Режим доступа: http://www.zdravniza.ru/irido.html.
- 7. Культин Н.Б., Delphi в задачах и примерах, Сборник примеров программ и задач для самостоятельного решения в среде Delphi, Санкт-Петербург, 2008.
- 8. Культин Н.Б., Visual Basic в задачах и примерах, Сборник программ и задач, Санкт-Петербург, 2008.
- 9. Культин Н.Б., Программирование в Turbo Pascal 7.0 и Delphi, Учебник, Санкт-Петербург, 2001.
- 10.Лозовская П., Романова М., Реферативно-исследовательская работа по информатике на тему: "Экспертные системы на примере решения задач из курса генетики и иридодиагностики" (Научный руководитель Наумова А.И.) [Электронный ресурс]. Режим доступа: http://planeta.tspu.ru.
- 11.Наумова А.И. Математическое моделирование расчётов из курса лекарственной терапии для детей [Электронный ресурс]. Режим доступа: http://planeta.tspu.ru.

- 12.Наумова А.И. Программирование задач из курса физиологии человека. Группа крови и резус фактор [Электронный ресурс]. – Режим доступа: http://planeta.tspu.ru.
- 13.Наумова А.И., Программирование задач из курса общей биологии. Репликация ДНК [Электронный ресурс]. – Режим доступа: http://planeta.tspu.ru.
- 14.Наумова А.И., Программирование задач из курса общей биологии.
 Транскрипция, Научно-методический журнал "Школьный вестник", № 3(31), МКУ "Центр развития образования г. Твери", 2014.
- 15.Наумова А.И., Программирование задач из курса общей биологии. Цитологические основы закономерностей наследования, Сборник статей по материалам XLV международной научно-практической конференции № 4(34), Москва, Интернаука, 2016.
- 16.Общая биология, Учебник для 10 класса, Профильный уровень, под редакцией академика РАЕН профессора В.Б. Захарова, Москва, 2010.
- 17. Общая биология, Учебник для 10-11 классов, под редакцией членакорреспондента АН профессора Ю. И. Полянского, Москва, 1990.
- 18.Особенности дозирования лекарственных веществ детям [Электронный ресурс]. – Режим доступа: http://mybiblioteka.su/10-43269.html
- 19.Особенности лекарственной терапии у детей [Электронный ресурс]. Режим доступа: http://vmede.org/sait/.
- 20.От чего зависит цвет глаз? по материалам сайтов [Электронный pecypc]. Режим доступа: http://medicinform.net, http://www.medicus.ru/oftalmology/patient/ot-chego-zavisit-cvet-glaz-27069.phtml.
- 21.Попов В.Б., Turbo Pascal для школьников. Версия 7.0, Учебное пособие, Москва, Финансы и статистика, 1998.
- 22.Репликация [Электронный ресурс]. Режим доступа: http://ru.wikipedia.org.
- 23.Современное образование [Электронный ресурс]. Режим доступа: http://neuch.org/thought/refleksiya-na-uroke.
- 24. Толмачев Е., Иридодиагностика [Электронный ресурс]. Режим доступа: http://ecoflash.narod.ru/idey1.htm.

- 25.Угринович Н.Д., Информатика и информационные технологии, Учебник для 10-11 классов естественно-математического, информационно-технологического и общеобразовательного профилей, Москва, БИНОМ, 2006.
- 26. Угринович Н.Д., Информатика и ИКТ, Профильный уровень, Учебник для 11 класса, Москва, БИНОМ, 2009.
- 27.Угринович Н.Д., Исследование информационных моделей, Элективный курс, Учебное пособие для учащихся старших классов информационно-технологического, физико-математического и естественно-научного профилей, Москва, БИНОМ, 2004.
- 28.Уроки PascalABC.NET. Программирование олимпиадных задач [Электронный ресурс]. Режим доступа: http://learnpascal.ru/vvedenie-v-paskal/pascalabc-net.html.
- 29. Фармакология с общей рецептурой: Учебник/Д.А. Харкевич. 3-е изд., испр. и доп. М.: ГЭОТАР Медиа, 2015. 464 с.: ил.
- 30.Фармакология с общей рецептурой: Учебное пособие/В.В. Майский, Р.Н.Аляутдин. – 3-е изд., доп. и перераб. – М.: ГЭОТАР – Медиа, 2015. – 240 с.:26 ил.
- 31.Физиология человека, Учебник для студентов медицинских вузов и факультетов под редакцией В.М. Покровского и Г.Ф. Коротько, Глава 6. Система крови. Группы крови, издательство "Медицина", 2001.
- 32.Цвет глаз: как передается от родителей ребенку. Рассчитать цвет глаз [Электронный ресурс]. Режим доступа: http://genetics.thetech.org/ask/ask316, www.radionetplus.ru/teksty/.
- 33.Энциклопедический справочник. Современные лекарства. М.: Русское энциклопедическое товарищество, 2005.

Учебное издание

Наумова Алиса Ивановна – преподаватель информатики высшей квалификационной категории Муниципального общеобразовательного учреждения "Тверской лицей", победитель Всероссийского профессионального педагогического конкурса "IT-урок", проводимого Центром новых образовательных технологий ТГПУ,

лауреат XXXV Международной выставки научной и учебной литературы, проводимой по решению Президиума Российской Академии естествознания в рамках национального проекта Золотой Фонд Науки

Программирование задач медико-биологической направленности

Учебный практикум по информатике для учащихся естественно-научного профиля общеобразовательных учреждений

Отпечатано с оригинала автора

Подписано в печать 20.10.2017. Формат 60х84 ¹/₁₆. Усл. печ. л. 7,25. Тираж 200. Заказ № 508. Редакционно-издательское управление Тверского государственного университета Адрес: 170100, г. Тверь, Студенческий пер. 12, корпус Б. Тел. РИУ (4822) 35-60-63.