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Abstract: We study the asymptotic behavior of the maximum degree in the preferential
attachment tree model with a choice based on both the degree and fitness of a vertex. The
preferential attachment models are natural models for complex networks (like neural
networks, etc.) and constructed in the following recursive way. To each vertex is assigned a
parameter that is called a fitness of a vertex. We start from two vertices and an edge between
them. On each step, we consider a sample with repetition of 4 vertices, chosen with
probabilities proportional to their degrees plus some parameter [ >—1. Then we add a new

vertex and draw an edge from it to the vertex from the sample with the highest product of
fitness and degree. We prove that the maximum degree, dependent on parameters of the
model, could exhibit three types of asymptotic behavior: sublinear, linear, and of n/Inn
order, where n is the number of edges in the graph.

Keyword: complex networks, random graphs, preferential attachment, power of choice,
fitness.

1. Introduction

The complex networks appear in numerous applications whose study
requires analysis of big data (see, e.g. [1]). It is usually used to describe the
structure of the internet and various social and communication networks (see,
e.g. [2]). The other important application is different neural networks (see, €.g.
[3]). It also could be used to model different nano-objects (see, €.g. [4, 5]). One
of the properties of such a structure is that it could consist of nodes which have
different properties that affects the development of the network. One of the basic
models for a complex network is the preferential attachment model. To take into
account the different properties of the nodes, one could introduce fitness into the
model. It 1s also possible to add additional decision-making aspects to the model
through the addition of choice. The standard preferential attachment graph
model was introduced in [6]. The preferential attachment graph is constructed in
the following way. First, we start with some initial graph G, usually, for

simplification purposes, it consists of two vertices and an edge between them.
Then on each step we add a new vertex and draw an edge from it to an already
existing vertex chosen by some rule. For the standard preferential attachment
model, the rule is that we choose a vertex with a probability proportional to its
degree. Usually one considers the rule where we choose a vertex with
probability proportional to its degree plus some parameter S>-1 (see, e.g. [7,
8]). Such a model was widely studied (see, e.g., [9], section 8) and different
modifications have been introduced.
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In the present work, we study the combination of two mentioned above
modifications of this model. One of the modifications is the introduction of the
fitness to the model (see, e.g., [10]). Fitness is a parameter that assigns to each
vertex and affects its probability to be chosen at each step. The other
modification is the introduction of a choice to the model (see, e.g., [11,12,13]).
In this modification, we consider the sample of 4 independently chosen vertices
and then choose one of them by some rule. Two types of rules have been
considered: the degree base rule (see, e.g., [14,15]) and the location (or fitness)
based choice (see, e.g., [16,17]). In the present work, we consider choice based
on both degree and fitness.

Let us introduce our model. Fixing f>-1 and de N, d >1, we consider a
sequence of graphs G, build recursively as following. We start with the initial
graph G, that consists of a two vertex v,, v, and an edge between them. Graph

G

n+l

is built from G, by adding a new vertex v,,, and drawing an edge from it to

n+l
the vertex of G,, chosen by following rule. We first consider a sample of 4
vertices of G, chosen independently from each other with probabilities
proportional to their degrees plus parameter f (we would refer to the degree of
vertex plus f as its weight). Then we choose vertex among them that maximize

function W(v,n):= 4 deg, v, where / is the fitness of v,. We consider case when
A are i.i.d. random variables that take two values, 1 and 1>1 with non-zero
probabilities. For simplification we also suggest that 4 is not rational. So W (v,n)
would not take the same value on vertices with different fitness.

Let us formulate our main result. Let M(n) be the maximum degree of
vertices of G, .

Theorem 1. In the defined model,
1. If d <2+ than for any € >0

d d
——€ —t€
P(Vn>n0:n2+ﬁ <M@n)<n®”’ J—)l,as ny, —> 0.

2.If d=2+p, then almost surely

lminf M(mn)Inn S 2d

n->eo n  (d-DA’
limsup M(m)Inn < a’2d1 .
n—>0 n -

3.1f d >2+f, then almost surely

liminf ) > X
n—>w0 7 i

limsup M(n)

n—w n

<x’,
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d
where x” is a unique positive root of equation 1—(1— al j =x.

2+ p

The result is similar to the Theorem 1.1 of [15] and shows that the
addition of fitness to the choice from the sample does not affect the type of
asymptotic of the maximal degree. Let us provide an outline of the proof. For
each case, the lower and the upper bound is proven separately. The general idea
is that we obtain either a lower or upper bound for the conditional probability to
increase M(n) (or its modification for the lower bound) as a function of M(n).
Then we study the properties of this function to get an estimate for M(n). One of
the key factors is the coefficient of the first term of the expansion by degrees of
M(n)/n, which equals to d/(2+). In case d<2+f we would analyze the

fraction M(n+1)/M(n) to prove sublinear behavior of M(n).In case d=2+p we
would construct additional expressions to outline the second term of the
expansion to get n/lnn bounds and for d>2+p, we would use a stochastic
approximation to get linear estimates.

Let us give a short description of the stochastic approximation approach
(see, e.g., [18,19] for more details). Process Z(n) is a stochastic approximation
process if it could be written as:

Z(n+1)~Z(n)=y,(F(Z(n)+E,+R,),

where y,, E and R, satisfy the following condition. y, is not random and

> ¥, >0, >.(r,) <, usually one puts y,=1/n or y,=1/(n+1). The term E, is

n=1 n=1

F -measurable where F is the natural filtration of Z(n), E(E,|F,)=0 and
E(E,) | F)<c for some fixed constant c. We consider

E, :i(Z(n+1)—E(Z(n+l)\.7:n)) and therefore the function F(x) could be found

n

from representation E(Z(n+1)-Z(n)|F)=y,(F(Z(n)+R,) where R, is a small

error term that satisfies ) 7, | R, |<o almost surely. If these conditions hold (they

n=1

could be easily checked in our case) then Z(n) converges to the zero set of F(x).
In case when there is more than one eligible (nonnegative) root of F(x) we
would also prove non-convergence to one of the roots.

The other argument we would use is the persistent hub type of argument
(see, e.g., [20] and Proposition 1.2 in [15]). This argument is based on the
following urn model property. If we have random walk (x(n),y(n)) that takes

x(n)+p and ym+p

x(n)+y(n)+2p x(n)+y(n)+2p
represents the evolution of the urn with x(n) white and y(») black balls in urn

steps up and right with probabilities (it also
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model, see e.g. Theorem 3.2 in [21] or Section 4.2 in [22]) then it converges in
distribution to continuous Beta-distributions and hence one of the variables x(#),

y(n) would exceed the other after some random moment. Also, if such process
starts at point (1,a), then probability that x(n) exceeds y(n) at some moment

would decay exponentially with «. Hence, to prove the existence of the
persistence hub it is enough to show that the pair (deg, v,, deg, v,) dominates

urn model in a sense that it has a higher conditional probability to increase the
degree of a vertex with a higher degree. We would use such an argument
separately for different fitness.

2. Lower bounds

To prove the lower bound we separately consider maximum degrees
among vertices with different fitness and estimate dynamics of the product of
fitness and degree. Let M, (n) be the maximum degree among vertices with

fitness 1 in G,, M, (n) be the maximum degree among vertices with fitness 2 in
G,. Let F/(k.n) be the total weight of vertices with fitness 1 with degrees more
than £ in G,, F,(k,n) be the total weight of vertices with fitness 1 with degrees
more than & in G,. Let L (k,n) and L, (k,n) be the number of vertices in G, with
degree & and fitness 1 and 4 correspondingly. Consider functions:

- (2) :=£1‘<z+yﬂ)n]d‘(1‘<2x++ﬂy)n]d’

B i ) y k ) x+y d-1-k
g"(x’y)"g[l (2+ﬂ)nj (l (2+ﬂ)n]
Note that £, (x,y)=

g,(x.») and both functions are decreasing with

X
@+p)n
y when x,y>0, x+y<(2+p)n. Also, f,(x,y) is increasing with x while
g,(x.») is decreasing with x, and hence 17, (x,y)= f, (Ax,y).

Then:

B(M, (n+1)-M,(n)| F,) = £,((M, (n)+ B L, (M, (n).n). F, (M, (n)/ .n)),

B(M, (n+1)-M, (n)| F,) = £,((M, (n)+ B)L,(M, (n).n).F,(AM, (n).n)).

Note that either F (1M, (n).,n) (if M,(n)<iM,(n)) or F,(M,(n)/A.n) (if
M, (n)>AM,(n)) equals to 0. Moreover, if F,(M,(n)/A.n)=0 there is a vertex

with fitness 1 and a degree of at least AM,(n). Let us define the process
X

n
.

A

X, =max{M, (n),AM, (n)} . Note that M (n)=>
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Then:
- X, | F)=1{M,(n)>M,(n)/ A} Af, (M, (n)+ B.0)

+1{M, (n) < M,(n)/ A} £, (M, (n)+ B,0)
>1{M, (n)> M, (n)/ A} £,(A(M, (n)+ B).0)+1{M, (n) < M, (n)/ 2} £, (M, (n)+ B.0)

X, +5 X, 1
(2+ﬂ)ngn(Xn+ﬂ50)2(2+ﬂ)ngn (Xn’o)

E(X,

+1

> f(X,+B.0)=

Hence
1

ey & 0o

n

E(&U-;JZH
X

n
d

Note that g, (x,.0)—>d if % 50. Also, 1l 1+—2 | is of order n™7.
n k=1 (2+,8)k

<1 (the argumentation in this case is similar to the case a+y<I in

Let d
2+
d

[23]). Then, for any ¢ on the event {Xn <nm_£} X, would grow faster than

L—s/2
n**#  and hence for any n,e N with high probability at some time n>n, X,

d

would exceed n*# .
d -&
X, >(1-8)n;"*  then probability that process X,, n>n, would cross a line

Also, due to standard large deviation estimates, if

d d d
—& . . _ _ m—e
(1-26)n***  before it crosses a line n**?  does not exceed ce” for some

<1) with high probability liminf—2_>1.

—s

2+ ﬂ n—o
n2+ﬂ

¢ =c(5). Therefore (for

Similarly, for 5 dﬂ >1 with high probability liminf X s 0. Also, we get
+ n—>0 n

that
1

B(X,. -, 1 %)= (x,.0)+0[ 1.

n

Hence, if we define Z, = X, , we would get that
n

E(Z(n+1)—Z(n)|ﬁ)sﬁ(E(Xm - X, |fn)—Z,7)=ﬁ(f(Zn)—Zn +0(%D,

where f(x)=1—(1—x)d.
Note that if d>2+ /8 then due to concavity of f(x) equation 7 (x)-x=0

has two roots in [0,2+ 4] (0 and a positive root x"). Since Z, does not converge
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to 0, by stochastic approximation we get that limsupZ, >x" almost surely, which

n—w0

gives us the lower bound for d>2+ 4.

3. Upper bounds
To prove the upper bounds, we first study dynamic of pairs (deg, v,,

deg, v,) separately for vertices of fitness 1 and 2 to prove the existence of

persistence hub among vertices of each fitness. Then we would use it to remove
terms L (M,(n),n) and L,(M,(n).n) and get upper bounds for the increment of

the maximum degree and prove upper bounds.
For any vertex v, with fitness 1 we get for n>i

E(deg,,  (v,)-deg, (v)IF,)=
£,((degq, (v,)+ B) L, (deg,, (v,).n). F;(degg, (v,).7)+ F, (degg, (v,)/ 4.7))
1, (deg,, (v,).n)
- % g, ((dean (v)+B) L (deg,, (v,).n).F (deg,, (v,).n)+F, (deg, (v,)/ 4 n)) ,
and for any vertex v, with fitness 1 we get for n>i:
E(deg,, (v,)-deg, (v)I %)=
£ ((degGﬂ (v)+ ﬁ)L/1 (deg@x (v). n), 1 (l deg,, (v,.),n) +F, (degG” (v,.),n))
L, (deg, (v,).n)
_deg,, (v)+8
Gip ((degq, (v)+B) L, (degg, (v).n). Fi (Adegq, (v,).n)+F, (degg, ().7))-

For vertices v, and v, with the same fitness let us estimate the probability

to draw an edge to v, conditioned on the event that edge is drawn to one of them.
Let deg, v, >deg, v, (if vertices have the same degree the probability is 1/2).
Note that g(x,y) is decreasing with y and x+y. Also, for vertices with fitness 1

we get that:
Fl(degG” (vl),n)+F,1 (degGﬂ (v)/ A, n)éE(degG (v) n)+Fl (degGﬂ (vj.)/),,n),
Fl(degGM (vi),n)+]a(deg6 )/ 2, n)+<deg( )Li (degG () n)
SE(dean (vj),n)+F/1 (deg( )/ A, n)+(dean (vj) ) (dego (v,), )
Therefore
]P’(dean+1 (v,.)—dean (v)=17% deg,, (v)- deg,, (v )+deg( ( ) deg,, (v ( : ) l)

deg(}” (vl ) + ﬂ
deg,, (v,)+ deg,, (vj ) +2p
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Hence, after some random time N both Z (1, (n).n) and L,(M,(n).n)

would be equal to 1.
Therefore, for »> N we would get

E(M, (n+1)=M,(n)| 7,)= 1,((M, (n)+ B). F, (M, (n)/ 2.n)) < £,((M, (n) + ).0),
B(M, (n+1)-M, ()| F,) = £,((M, (n)+ B). F; (AM,, (n).n)) < £, ((M, (n)+ B).0).
Recall that if d >2+ 3, then equation f(x)—x=0 has two roots in [0,2+ 3]
(0 and a positive root x"), and if d <2+, then 0 is the only root in [0,2+ 5].
Let us define Z(n)=M(n)/n. Then

1 1 1
E(Z 1)-Z F)<— M —Z )=—— Z)-Z +0|—|]|.
(220 %) -5 (0, 8)-2) = (@) -2,00[ 2]
For d<2+p by stochastic approximation, we get limsupZ =0 almost

n—>0

surely. For d>2+p8 by stochastic approximation, we get that limsupZ, <x’

n—>0

almost surely, which gives us an upper bound for d >2+f.
Now consider the case d <2+ f. Similarly to the lower bound, we get that
SE M (n+1) F |<1s £, (M (n)+5.0)  g(M(n)+p.0) a4 g
M(n) M(n) (2+ﬁ)n (2+,8)n

where in the last inequality we used that g(x,0)<d for x>0. Hence, as in the

lower bound argument, we get that for any £>0 lim supw =0, which gives us

n—w nm‘h‘:
the upper bound for d <2+ 4.
To get the upper bound for the case d=2+f, for ¢>0 consider variables
cn(M(rH—l)—M(n)) ¢

Mr(’n)'
fJ :(1 +%) E[e MG 0 | }
=(“%)E 1‘M(:m)+cn(jj((:)j\;)(;ﬁgn))+O[(M(;+l)]2{(1\4(;/:1))2] g

st = i) ) |

—C

U, =ne
We get that
n n+l
E(% F j _n+lg (QCW)CM(M)
U

n
p n
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1+—

al IJ[I‘MCM*CnE(M((nAZS)y(n)f")“’(;ﬁﬂﬁ

S(“ﬂ[l‘M?n)+cgfz(i4ﬂ(3;<i’)0)“’(n}” ﬂ

Note that gn(x,0)=d—d(a;_l)(2+xﬂ) +0(£j when X-0. Hence if
2+ B =d we get

Uy 1 e c _d(d-1) M(n) M(n)Y 1

E( U, F"]S“n M(n)+(2+/3)M(n)(d 2 epn [[ 2 HJ* (,J

:[H%_%M@].

Hence, if c>dz—d then U, is supermartingale, and by Doob's theorem

there is a random variable R, such that supU <R almost surely. Hence for all

(large enough) n
cn
M -
(n) ) Inn—InR
almost surely. Therefore

liming M (7) _ 2d
re d—1

almost surely.

4. Lower bound for d=2+8.
Let now prove lower bound for d=2+ /. The argument is similar to the
argument for the upper bound. Recall that X, = max {M, (n),AM, (n)} .

For d/(2+B)=1 and ¢ >0 let consider

n

Note that

Yn::ey"/n.
n+l n
Y n+l

2 2
X -X
= gl1+-E (X ”)+O L. r; F
n+l X, XX x.. ) \x
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n c an(X _Xn ]';) 1
=—1+—- 2 To| =5
n+l X X n

s S )
!

Recall that gn(x,0)=d—d(d_l) al fj when ——>O Hence, if
2 (2+,B)n n
2+pB=d, we get
E(hﬁ]gl—l i——[ &+o(£j]+o(l/n)=l—l+C(d_1)+o(1/n).
Y n X, X, 2dn n n 2dn

Hence, if ¢ < 2d then ¥, is supermartingale, by Doob's theorem there is a

random variable R, such that supY, <R almost surely. Hence for all »

n

cn

> S
Inn+InR
almost surely. Therefore

liminf 2% > 24
7 n d-1
almost surely.

5. Conclusion

In the present paper, we considered a generalization of the linear
preferential attachment model by adding a choice that is based on both degree
and fitness of the vertices in the sample. The generalization provides a two-step
process of building a preferential attachment graph, at first, we create a sample
of vertices, and then we choose a vertex from that sample. Such a division is
natural in terms of representing a decision-making process, when one considers
few options and then makes a final decision. Based on the parameters of the
model, we proved three types of asymptotic behavior of the maximum degree of
the graph. The first is sublinear behavior when all nodes accumulate connection
to other vertices over time with similar rates that in long terms vary only by a
constant multiplier. The other is the linear behavior, when we have a
concentration, i.e. one node accumulates the fraction of all edges so its degree
behavior significantly differs from the behavior of other nodes. We also show a
transition between these two behaviors. Such effects could be seen in numerous
real networks such as neural networks, the internet, social and consumer
networks, election models, and others.
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Opueunanvuas cmamos
HPEAITOYTUTEJBHOE IPUCOEAUHEHHUE C BBIBOPOM, 3ABUCALLIUM OT
HPUT'OJHOCTHU
10 .A. Masnsinkux
DI'LOY BO «Teepcroil cocyoapcmeeHHbIll YHUGE PCUMEN »
170002, Poccus, Teeps, Cadoswiii nep., 35

DOI: 10.26456/pcascnn/2021.13.483
AnHoTtauus. Ucciaenyercs acHMOTOTHISCKOE MOBEACHAE MAaKCUMATIBHOM CTENICHN BEPIIUHBI B rpade
MPEANOYTUTEIBHOTO MPUCOCAUHEHHS C BEIOOPOM BEPIINHBI, OCHOBAHHOM KaK Ha €€ CTCIICHHU, TaK U Ha
JOTOITHUTEIBHOM TapaMeTpe (MpUrogHocTH). Moaenu npeAnouTHTEIHOTO IPUCOCAHHEHHS ITHPOKO
WCTIOJIB3YIOTCS 11 MOJCIHPOBAHUS CIIOKHBIX CETCH (TAKMX Kak HCUPOHHBIC cetH u T.4.). OHu
CTPOATCS CACAYIOIUM 00pa3oM. MBI HauMHACM C ABYX BEPLIMH U pebpa MEKIY HUMH. 3aTeM Ha
KOKIOM IDare MBI PacCMaTpuBacM BBIOOPKY M3 V)K€ CYLIECTBYIOIIUX BCPIIWH, BBIOPAHHBEIX C
BCPOATHOCTSMH, NMPONOPLUHOHATEHBIMH UX CTEIICHAM ILTIOC HEKOTOPHIN mapameTp £ >—1. 3atem Mbl
J00aBJIICM HOBVIO BCPIIMHY W COCOWHACM c¢ peOpoM ¢ BEpIIMHOH K3 BHIOOPKH, HA KOTOPOH
JOCTUTacTCsS MAaKCHUMYM MPOU3BCACHUSA €€ CTCHCHH HA €€ NPUroJHOCTh. MBI JoKazamd, 4To B
3aBUCHUMOCTH OT TNApPaMETPOB MOJECTH BO3MOXKHBI TPH THIIA MOBEACHHS MAaKCHMAIBHOW CTETICHH
BCPLINHBI — CYONMMHEHHOE, TUHEHHOE U mopsaka #/Inn , rae n — 4uciIo BepLIMH B rpade.
Kurouegvie cnosa: croocHvle cemu, cayudtinvle epaghel, NpeOnOUmMuUmMensHoe NpPUcCoeouHeHue,
CAYYATiHBIT 86100, NPUCOOHOCHD.
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